
The Living Digital Twin: 3 factors to get
beyond the hype

5 october 2022

Sylvain Girard (girard@phimeca.com)

1



Phimeca: the responsible engineering
Build together, through innovative engineering, an
industry caring for human and its environment.

Clermont-
Ferrand

Chambéry

Paris

I Since 2001
I 30 engineers and PhDs
I Tech. studies, software development, R&D, consulting, training
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“Digital twin”: a buzzword?

Quite like “artificial intelligence” digital twin is
I a catch-all term with fascinating connotation,
I an old concept revived during the last decade with lots

(overly?) alluring promises,
I achieving impressive results, in some particular settings.

We ear that (some flavour of) digital twin are on the verge of
industrialisation. . .

. . . but to many of us it mostly brings frustration or disillusion.
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Disclaimer: our definition

Let call digital twin

+ a physical model capable of simulation
+ and a procedure for regular confrontation with observations
→ to produce a service.

NOT a digital copy of something “real”.
↑ The differences are subtle. . . can you see it?

« No word ever has exactly the same meaning twice. » – Simon I. Hayakawa,
Language in Thought and Action (1949).
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Keeping it alive: 3 levers

1. Robust and interpretable machine learning

2. Physical modelling as a knowledge creation process <!– -
Models are mostly *reasonings* → intangible and partially tacits –>

3. Continuous reassessment of models <!– - How can you tell
that discrepancies are imputable to the model, observer, or
“reality”? –>
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Example: monitoring offshore mooring lines
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Bend a paper clip over and over again. . .
. . . it suddenly breaks by mechanical fatigue.
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Traditional longevity prognosis
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Let use onboard motion recording
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We care about motion not waves!
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High regression problem → neural net ?
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Supervised dimension reduction

Signal
processing

Unsupervised
dimension
reduction

Supervised
dimension
reduction

I

Dimension

1000 motion
episodes

1000 spectral densities Damage–probability
map

We find a topology invariant projection with a few hundred
simulations only.

→ PCA-like methods e.g. Sliced Inverse Regression (supervised) or
Auto-associative Model (non-linear).
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Continuously updated damage map
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I Motion is encoded in 2D.
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Keeping it alive: 3 levers

1. Robust and interpretable machine learning

2. Physical modelling as a knowledge creation process

<!– - Models are mostly *reasonings* → intangible and partially
tacits –>

3. Continuous reassessment of models <!– - How can you tell
that discrepancies are imputable to the model, observer, or
“reality”? –>
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20 years of model driven innovation at
LEDA 

old software 
hard to maintain 

80's

DRIF-BI 
2004

Avenas et Bouskela

CATHARE, SICLE, LILIGV, GV 1D,
PERFGV, MANTA, ANETH,…

1300 MW
REP(P4)

2006

Souyri & Bouskela

+simple

GV 51B 
2008

Chip

+stable

GV 51B v.2 
2010

Midou

GV 51B v.7 
2012

Ninet & Deneux

+réaliste

…

EDF Lib
2003

2011

2019

Bouskela 
& El Hefni 

Bouskela

2020

ARE/ASG P4
Degenève

Combine cycle
plant

2011

Lebreton

Nuclear
performance
monitoring

2014

Machine learning spin-off
Schwartz, Pineau & Lagarde

2018 

New reactor design
(conventional & SMR) 

202x?🞋

Solar plant
performance rating 

2014

Soler & El Hefni 

 

2014

Building thermal perf.

ARE/ASG P4
multimode

2016

Corona Mesa-Moles steam generator
predictive

maintenance
S. G. 

2014

2014

14



Starting from scratch every 2 years. . . seriouly?
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All knowledge is tacitly rooted

Explicit
I Text,
I Equations,
I software,
I mock-up,
I specifications,
I drawing,
I procedure. . .

Tacit
I Beliefs
I view point,
I value systems,
I intuition,
I know-how. . .

Can be transcribed in a
formal language

Personnal et context depedent

Michael Polanyi, « The tacit dimension », 1966.
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The « SECI » knowledge creation model is highly
relevant to physical modelling

tacite→tacite

Externalisation

Combinaison

Socialisation

Internalisation 

tacite→explicite

explicite→expliciteexplicite→tacite

Nonaka, Ikujiro & Takeuchi, Hirotaka « The knowledge-creating company », 1995.
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4 dimensions to physical modelling

Individual : Understand → build knowledge

Group : knowledge amplification → the organisation innovates

Simulation : quantify physical constraints

→ Sizing, margin allocation, optimisation. . .

Digital twin : models produce services

→ Monitoring, predictive maintenance, decision making. . .
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Keeping it alive: 3 levers

1. Robust and interpretable machine learning

2. Physical modelling as a knowledge creation process

3. Continuous reassessment of models
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Example: an air compressor model
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Traditional model development
I Once and for all: fit then use
Modelling Calibration Validation Simulation

I Local calibration: component by component

 

ParametersOutput
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Parameter fitting is often ambiguous

At the bottom of the “pit”, any (â, b̂) pair is (almost) as good as
any other
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“Best” parameters may fluctuate in time
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Towards more dynamic and holistic model
development

1. Conjunction of local optima 6= global optimum

2. Represented objects, context, and available knowledge
continuously evolve → so should the model :

Modelling
Calibration

Validation Simulation-Diagnosis

3. The whole distribution of simulation–observation difference
carry a lot more information than a single simulation
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Robust and interpretable machine learning

We observe complex manifestation of simple
phenomena.

The Starling hypothesis

I (Supervised) dimension reduction is an example of robust,
interpretable, frugal and theoretically founded machine learning.
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Physical modelling as a knowledge creation process
Models are mostly reasonings, thus  
intangible and partially tacit.

I Emphasis the first two dimensions of physical modelling:

1. Individual

2. Group

3. Simulation
4. Digital twin
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Continuous reassessment of models

How can you tell whether discrepancies stem
from the model, observer, or “reality”? 

I Use a Bayesian framework to track evolution of posterior
distribution of parameters.
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Thank you for your attention.

Let keep in touch

Sylvain Girard, girard@phimeca.com
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