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Phimeca

Paris

Clermont-Ferrand

I Phimeca help industries to optimise the design, operation and
maintenance of their systems with a complete offer

I Technical studies and R&D
I Bespoke software development
I Practical and theoretical training

I 2 offices: Paris and Clermont-Ferrand
I 30 PhDs and engineers
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Overview

Leverage artificial intelligence and digital twins to
1. uncover the intricate structures of data sets,
2. produce meaningful maps,
3. design monitoring and prognosis devices.

Two case studies
I Nuclear safety: diagnose steam generator clogging
I Offshore facilities: monitor fatigue of risers and mooring
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Nuclear safety

1. Steam generator clogging

Pressure drop 
sensor
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Nuclear safety

Clogging phenomenon

Endoscopy of topmost plate

Clean hole Clogged hole
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Nuclear safety

Effect of clogging

Time in seconds

Evolution before chemical cleaning

Pressure 

drop
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Nuclear safety

Effect of clogging

: chemical cleaning

: evolution after cleaning
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Nuclear safety

Digital twin (Modelica)

Observed
Simulated

Pressure
drop

Time in seconds

Predicting clogging from pressure signals is an
ill posed inverse problem.
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Nuclear safety

Unsupervised dimension reduction

I Deviation from average behaviour of pressure signal can be
approximated by the sum of

I a “slope” component (95.5% information)
I and a “curvature” component (4.4% information)

Time in seconds
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Nuclear safety

Supervised dimension reduction

I The slope component can predict a single global clogging index.

I Inversion (slope → clogging index) is now straightforward

I The curvature component does not improve the diagnosis

I Empirical severity scale:

Weighted average
of clogging ratios

1 2 3 4

Benign ModerateConcerning Serious Critical

Chemical cleaning
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Nuclear safety

Diagnoses examples 1/2

Clogging
index

and

Diagnosis

I Healthy steam generator.
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Nuclear safety

Diagnoses examples 2/2

Clogging
index

and

Diagnosis

Chemical
cleaning

I Plant shutdown induced by tube crack.

11



Offshore fatigue

2. Offshore fatigue

I Offshore facilities sustain continuous swell induced motion.
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Target: predict component lifespan for extending operating period

Note: a lot of the following results from collaboration with
(Jean-Philippe Roques).
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Offshore fatigue

Example of application:
mooring line fatigue
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Offshore fatigue

Classical prognosis method
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I How to extrapolate from a some one hundred simulations?
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Offshore fatigue

Innovation: use in situ measurements
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I We are interested into the boat, not waves!

I How to extrapolate from a some one hundred simulations?
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Offshore fatigue

Innovation: use in situ measurements
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I Example of 3 hour motion episode.

I How to extrapolate from a some one hundred simulations?
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Offshore fatigue

From complex signals to goal oriented map

Signal
processing

Unsupervised
dimension
reduction

Supervised
dimension
reduction

I

Dimension

1000 motion
episodes

1000 spectral densities Damage–probability
map

I Dimension reduction is adapted to prognosis.
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Offshore fatigue

Probability–damage map
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Continuous processing of motion and update of lifespan prognosis
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Conclusion

Take home message

I Low dimensional structures of complex data can be mapped.

I Our stance to artificial intelligence aims at
I reliable generalisation,
I high interpretability,
I compatibility with small samples.

I The output a 10+ years of R&D is now available to
your industry.

18



Thanks for your attention.
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