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Abstract
Decision of emergency response to releases of hazardous material in the at-1

mosphere increasingly rely on numerical simulations. This paper presents2

two contributions for accounting for the uncertainty inherent to those simu-3

lations. We first focused on one way of modelling these uncertainties, namely4

by applying stochastic perturbations to the inputs of the numerical dispersion5

model. We devised a generic mathematical formulation for time dependent6

perturbation of both amplitude and dynamics of the inputs. It allows a more7

thorough exploration of possible outcomes than simpler perturbations found8

in the literature. We then improved on the current state of the art on di-9

mension reduction of atmospheric data. Indeed, most statistical methods10

cannot cope with high dimensional data such as the maps simulated with at-11

mospheric dispersion models. Principal component analysis, the most widely12

used method for dimension reduction, relies on a linearity hypothesis that is13

not verified by these sets of maps. We conducted a very encouraging exper-14

iment with auto-associative models, a non-linear extension of this method.15
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1. Introduction16

Decision of emergency response to releases of hazardous material in the17

atmosphere increasingly rely on predictions from numerical models. Such18

simulations of atmospheric dispersion are highly uncertain due to the com-19

plexity of the physical phenomena, and because their inputs, in particular20

meteorological or source term related, are highly uncertain. We propose two21

methodological improvements to the current practices aimed at accounting22

for these uncertainties.23

In section 2, we state the importance of setting the decision problem in24

a probabilistic framework, and introduce a realistic case study later used to25

illustrate our two contributions.26

In section 3 we expound on one way of modelling these uncertainties,27

namely by applying stochastic perturbations to the inputs of the numerical28

dispersion model. We devised a generic mathematical formulation for time29

dependent perturbation of both amplitude and dynamics of the inputs. It30

allows a more thorough exploration of possible outcomes than simpler per-31

turbations found in the literature.32

The output of dispersion models are spatial maps. Analysing a set of33

maps, whether qualitatively by visual inspection, or quantitatively with sta-34

tistical methods, is much harder than dealing with numerical values. In35

section 4 we discuss the issue of obtaining a concise representation of maps36

by a few scalars. Principal component analysis is the most widely used37

method for dimension reduction. It relies however on a linearity hypothe-38

sis that is seldom verified by sets of maps produced by dispersion models.39

We conducted an encouraging experiment with auto-associative models, a40

non-linear extension of this method.41

Both sections 3 and 4 begin with a detailed survey of the literature on42

the topic at hand.43

2. Problem statement44

We consider the following idealised decision problem. Hazardous material45

is released in the atmosphere during a given period of time. Mitigation ac-46

tions, for instance population sheltering or evacuation, must be performed in47

areas where a given concentration threshold is exceeded. Theses concentra-48

tions are predicted with a physical model simulating transport and dispersion49

in the atmosphere, and deposition by rain.50
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This decision making scenario is inspired by a real industrial incident51

that happened on January 2013 at the Lubrizol chemical plant located in52

Rouen, France. Operation mistakes and minor system failures in the plant53

resulted in extended release of hydrogen sulphur and mercaptan, which are54

both foul-smelling. The first report of olfaction in the neighbourhood of the55

site occurred at 8:00 am (local time) on Monday 21 January 2013. The first56

major emission peak occurred 12 hours later (2013-01-21 20:00). The major57

part of the material inventory (99%) was emitted during 23 hours, between58

2013-01-21 13:30 and 2013-01-22 12:30 [19]. The wind blew the plume as far59

as Paris during Monday night and towards London on Tuesday. Thousands60

of people have complained of nausea and headaches. For practical reasons,61

we focused here on a restricted area of about 35 kilometres horizontal print.62

Our approach could equally be applied at different space scales.63

2.1. Physical model64

The dispersion simulations were carried out with Parallel-Micro-SWIFT-65

SPRAY (PMSS). Originally, Micro-SWIFT-SPRAY (MSS) [33] was devel-66

oped in order to provide a simplified but rigorous computational fluid dy-67

namics solution of the flow and dispersion over rugged terrains and built-up68

environments in a limited amount of time. MSS encompasses the local scale69

high resolution versions of the SWIFT and SPRAY models.70

SWIFT is a 3D terrain-following mass-consistent diagnostic model taking71

account of the buildings and providing the 3D fields of wind, turbulence,72

and temperature. SWIFT interpolates between meteorological measurements73

(ground stations and vertical profiles), numerical data issued by meso-scale74

simulations (as in this paper) and, possibly, analytical relations of the flow75

influenced by the buildings (displacement zone, wake zone, skimming zone,76

etc.).77

SPRAY is a 3D Lagrangian Particle Dispersion Model able to account for78

the presence of buildings. Both SWIFT and SPRAY can deal with complex79

terrains and evolving meteorological conditions and with specific features of80

the release (heavy gas, light gas, etc.). More recently, SWIFT and SPRAY81

have been efficiently parallelized in time, space, and numerical particles lead-82

ing to the PMSS modelling system [28]. PMSS has been thoroughly validated83

against several wind tunnel and in-field experimental campaigns in the frame-84

work of notably the European COST Action [34] and the UDINEE project85

[27]. The performances of PMSS give full satisfaction as the modelling system86
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is compliant with the validation criteria for 3D dispersion models adapted to87

built-up areas, proposed by Hanna and Chang [16] and used internationally,88

2.2. Deterministic decision map89

The source is located in the middle of the simulation domain, paral-90

lelepiped whose horizontal print is a square with edge of 35 km. The simula-91

tion duration was set 35 hours in order to ensure that all material has either92

been deposited or exited the simulation domain at the end of simulation. In93

a deterministic framework, a single simulation is run using the most credi-94

ble values for the meteorological and source term model inputs. From now95

on, we call this set of values the (input) conjecture, and likewise we refer to96

the concentrations simulated using them as conjectured concentrations. We97

focus here on three uncertain inputs known to have a substantial impact on98

simulation output [3, 14, 2, 15]:99

• the rate of emission of material is a time series, called source term,100

• the rain intensity is a scalar spatio-temporal field,101

• and wind velocity (speed and direction) is a vector spatio-temporal102

field.103

The conjectured source term, displayed on figure 1, was adapted from104

data established by Ismert and Durif [20].105
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Figure 1: Conjectured source term. The time abscissa starts on 21 January 2013, 7:00.

The conjectured rain and wind fields were obtained from the community106

reconstruction weather and forecast meso-scale modelling system WRF [31].107

The WRF simulation domain has a horizontal resolution of 1 km. For the108
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wind, we used a set of 514 vertical profiles of the horizontal components, and109

we kept the 21 vertical layers below 3 km above ground level (AGL), plus110

surface data at 10 m AGL. Their locations are displayed in figure 2. WRF111

simulations are sampled every 15 minutes, and we used the 141 time steps112

from 21/01/2013 07:00 to 22/01/2013 18:00.113

We want to predict, at each location, whether an arbitrary concentra-114

tion threshold of 2µ g · cm−3 is exceeded during the considered 35 hour time115

frame. In real application, this decision criterion could correspond for in-116

stance to olfaction threshold or important health damage. The area where117

the concentration threshold is exceeded during the conjecture simulation is118

coloured in dark red in figure 2. Note that in this example, we do not con-119

sider the actual olfactory limit of the mercaptan which is lower than the120

chosen threshold and would lead to a decision map spanning quite all over121

the simulation domain, thus making less interesting the visual presentation122

of the uncertainties influence on the decision map.123

2.3. Probabilistic decision map124

We tackle the decision problem stated above from the viewpoint of un-125

certainty propagation. We need the probability distribution of maximum126

concentrations, but cannot model it directly. Instead, we model the un-127

certainty of inputs of the physical model by stochastic perturbations. The128

atmospheric dispersion model is a deterministic function. Here, its inputs are129

the source term, and the rain and wind fields. Its output is the maximum130

concentration over time at each location. Figure 3 represents the chain of131

functions linking the random variables of the problem. The random vector132

of perturbed inputs is denoted by Y , and the simulated maximum concen-133

tration over time by Z(s), a function of the location s. The upstream part134

of the chain will be described in section 3.135

In a probabilistic framework, taking a decision implies to admit a risk136

of committing a specified error. We choose here the risk of deciding not137

to perform a mitigation action while the concentration threshold is actually138

exceeded. The corresponding probabilistic decision rule is to decide action139

where the estimated probability of exceedance is above a small arbitrarily140

specified value, for instance 5%. The other possible error, not considered141

here, would be to decide unnecessary actions.142

Exceedance maps are obtained from maximum concentration maps by143

setting each cell to 1 if the chosen threshold is exceeded and 0 otherwise.144

Averaging a set of exceedance maps yields a Monte Carlo estimator of the145
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Figure 2: Area where the concentration threshold is exceeded during the conjecture
simulation (dark red). The source location is indicated by an orange dot. White dots
indicate the locations of the WRF verticals used as meteorological conjecture.
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probability of exceedance. Figure 4 displays probability of exceedance thus146

estimated from a sample of 100 simulations with inputs perturbed as de-147

scribed in section 3. This relatively small sample size is representative of148

crisis context when decision must be taken rapidly while each simulation149

requires up one hour of computation as in our case study. Assessing the150

convergence of the estimator of small probability with small samples is not151

trivial [1], but we expect errors due to partial convergence. Therefore, a152

conservative stance is to draw a decision boundary enclosing the level set153

corresponding to the chosen probability threshold (for instance the black154

line separating green and yellow in figure 4, for a 5% threshold).
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Figure 4: Orange, yellow and green areas correspond to three intervals for the probability
of exceedance estimated from 100 simulations.
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3. Amplitude and dynamics perturbation scheme156

We will now describe specifically the perturbation model. In section 3.1,157

we review the rationale behind modelling uncertainty by stochastic pertur-158

bations and the state of the art. In section 3.2, we present our generic math-159

ematical formulation for amplitude and dynamics perturbations. Finally, in160

section 3.3 we detail how it was implemented for the case study.161

3.1. Uncertainty modelling by stochastic perturbations162

The input conjecture comprises any model input that is issued from par-163

tial or imprecise observations, or from other physical model simulations, and164

possibly also model parameters that implicitly account for the unavoidable165

discrepancy between the real complex system under study and its idealised166

mathematical representation.167

One possible approach to modelling those uncertainties is to apply stochas-168

tic perturbations to the input conjecture. The meteorological conjecture is169

usually obtained from simulations with meteorological models. Several au-170

thors suggested to apply uncertainty propagation to those models, or to use171

sets of different models to produce build ensembles of input meteorological172

conditions [35, 10]. However, as [7] points out, it is rather unlikely that such173

an ensemble of conjectures might be available in a crisis context. Indeed,174

considerable efforts must be spent to calibrate such ensembles [11, 36], and175

the calibration process requires reference data that are not available when176

dealing with accidental releases. It can be expected that using ensembles177

designed for meteorological forecast as a substitute for specifically calibrated178

ones would result in underestimation of uncertainty. However ensemble ap-179

proach and conjecture perturbations are not mutually exclusive: applying180

additional perturbations to the ensemble members could possibly retrieve181

the missing variability [23]. We focus here on the case when a single conjec-182

ture is available.183

Random perturbations of inputs commonly found in the literature [7, 4,184

17, 12, 14, 15] are time independent random variables. They often follow185

a Gaussian distribution for additive perturbation, and log-normal for multi-186

plicative perturbation. The dynamics of the conjecture is rarely perturbed,187

except sometimes by global time delays [14, 15].188

3.2. General mathematical formulation189

The conjecture is, in general, a set of data of diverse dimensions: scalars,190

time series, and spatio-temporal fields. They are grouped by a brace on191
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figure 3. The random perturbations, collectively denoted by X on figure 3,192

are functions of the set of random perturbation parameters W .193

More precisely, let Y (s, t) be the spatio-temporal random vector obtained194

by perturbation of a conjecture c(s, t). We adopted the following generic195

perturbation:196

Y (s, t) = Γ(s,Θ(t)) c(s,Θ(t)) + ∆(s,Θ(t)). (1)

The random vector Γ (respectively ∆) is a multiplicative (respectively addi-197

tive) perturbation of the amplitude of the conjecture, that we will call the198

“gain” (respectively “offset”) perturbation. The random function Θ is the199

perturbation of the dynamics of the conjecture, called “time warp” pertur-200

bation.201

3.2.1. Spatio-temporal structure of the perturbation202

The spatio-temporal structure of each component of the perturbation203

must be postulated. We chose to impose smooth oscillating temporal vari-204

ations, and have the perturbation depend on the location only through the205

conjecture. More precisely, we used sums of cosines206

K∑
k=1

Ak cos(2πωkt+ Ψk). (2)

with random phases Ψ1, . . . ,Ψk, and random amplitudes Ak, . . . , AK . The207

time structure of the random process is controlled by the choice of the K208

periods ωk, . . . , ωK . The value of K is itself a parameter to be chosen by the209

modeller.210

The phases are independent and uniformly distributed on [0, 2π]. The211

distributions of the amplitudes are arbitrary.212

The gain and offset random processes are directly given by equation (2).213

The additional derivation of the time warp process is detailed in the next214

section.215

3.2.2. Time warp216

Let φ : R+ × R+ 7→ R+ be a function that expands or contracts a time217

interval δt by a factor λ(t) that varies in time:218

φ : t, δt 7→ φ(t, δt) = λ(t) δt. (3)
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Let {0 = t0 < t1 < · · · < tq = T} be a sequence of instants interspersing a219

time frame of duration T . Denote by φ0, . . . , φq−1 the warped time intervals:220

221

φn = φ(tn, tn+1 − tn). (4)
The associated time warp function θ : R+ 7→ R+ preserves the time origin222

and warps subsequent instants:223

θ(t0) = t0 = 0, (5)

and ∀n : 1 ≤ n ≤ q − 1,224

θ(tn) = T∑q−1
i=0 φi

n∑
i=0

φi. (6)

It follows from the above definition that a time warp function also preserves225

the total duration: θ(tq) = tq = T .226

A time warp random process Θ is fully characterised by specifying a ran-227

dom process Λ for generating warping factors λ(t). We used smoothly oscil-228

lating functions as defined by equation (2). In practice, a warped time series229

(namely a realisation y(s, t) of the random function Y (s, t) in equation (1))230

is obtained by231

1. Applying the gain and offset perturbations to the conjecture.232

2. Sampling warping factors λ(t) from Λ.233

3. Computing the corresponding warped instants θ(t0), θ(t1), . . . , θ(tq).234

4. Interpolating the time series resulting from step 1 at the warped in-235

stants.236

3.3. Perturbations for the case study237

We perturbed four input conjectures by processes based on equation (1):238

• source term (gain and time warp),239

• rain intensity (gain and time warp),240

• wind speed (offset and time warp),241

• and wind direction (offset and time warp).242

11



Component Criterion
All time warps 95% of the values lag behind (or anticipate) the cor-

responding conjectured value by less than 2 hours.
Source term gain 95% of the gain factors (as time varies, and from one

realisation to another) are between 0.5 and 2, with
a median equal to 1.

Rain intensity gain 95% of gain factors (as time varies, and from one
realisation to another) are between 0.5 and 2, with
a median equal to 1.

Wind speed and
direction offsets

95% of offsets lie within an interval whose length
depends on the spatial average of wind speed in each
vertical layer at each time step.

Table 1: Calibration criteria for the amplitude distributions.

This amounts to a total of 8 random functions (2 gains, 2 offsets and 4 time243

warp). All these components of the perturbation processes are statistically244

independent. They have all the same temporal structure, withK = 3 periods.245

Each component thus involves 6 random variables: 3 phases and 3 amplitudes246

(see equation (2)). The total number of random variables is 8× 6 = 48.247

We choose the following values for the periods: ω0 = 0, ω1 = T/4 and248

ω3 = T (the simulation time frame T is equal to 35 h). They induce contri-249

butions to the perturbation that are respectively, constant in time, with 4250

cycles within the time frame, and with a single cycle.251

We used independent Gaussian random variables with zero mean for all252

amplitudes (denoted Ak above). We applied an exponential transformation to253

the gain perturbations. The resulting distributions of multiplicative factors254

are thus roughly log-normal with median equal to 1. The standard deviations255

were determined following the criteria listed in table 1 established by expert256

judgement. Refer to supplementary material for illustrations.257

4. Dimension reduction of a set of maps258

Precise estimation of small probabilities of exceedance require larger sam-259

ple size than what can usually be achieved in a crisis context, due to the sub-260

stantial CPU cost of detailed atmospheric dispersion models. Furthermore,261

input uncertainty models rely on many postulates, for instance the distri-262

bution of perturbation parameters. The robustness of the decision criterion263
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can be tested by repeating the uncertainty propagation with different sets264

of perturbation parameters, which would require even greater sample size.265

Sample size can be a limiting factor even in less time constrained contexts like266

sensitivity analysis [14, 15] and source term estimation by inverse methods267

(Liu, 2017).268

Model emulation is an alternative to direct estimation by Monte Carlo269

sampling [3, 2, 15, 26, 24, 25]. The simulation sample is used to build a270

mathematical approximation of the physical model whose computational cost271

is negligible. Emulation techniques, such as Gaussian process regression [30]272

apply to models with a scalar output, but the output of the physical model273

considered here is a spatial map. In practice it is represented by a large274

number of values sampled on the nodes of a grid, in the same manner that275

a raster image is a set of pixels. Because these node variables are intricately276

dependent on one another, we can attempt parametrising the maps with277

a lesser number of variables by a process similar to those used for image278

compression.279

Principal component analysis (PCA) is a method for dimension reduction280

used extensively in data analysis for more than a century [29, 21]. It can be281

considered as the state of the art for dimension reduction in the specific field282

of dispersion simulation [6, 32, 26, 24, 25]. However, it relies on a linearity283

hypothesis that is not verified by the set of maps typically produced by284

atmospheric dispersion models. We expound on this issue in section 4.1.285

Auto-associative models (AAM) are a non-linear extension of PCA that286

benefits from an explicit and attractive mathematical foundation [13]. It is287

presented in section 4.2, and its performance is compared to that of PCA in288

section 4.3.289

4.1. Limitations of principal component analysis290

The output of the dispersion model is a spatial map (denoted by Z(s)291

in figure 3) discretised on a grid with p nodes. As such, it can be seen as a292

p dimensional vector, and the set of output maps Z is a subset of Rp. The293

principle of dimension reduction is to build an approximate low dimensional294

system of coordinates for Z based on a sample of elements z1, . . . , zN . We295

will assume without loss of generality that the sample point cloud is centred296

on the origin. Otherwise, the procedures described in the following must297

simply be preceded by a translation of vector ± 1
N

∑N
i=1 zi298

The algorithm of PCA solves a sequence of optimisation problems:299
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For k = 1, . . . , p, find the unit vector ak orthogonal to any ai with i < k300

that maximises ∑n
i=1(a′k zi)2 (where a′k denotes the transpose of ak).301

For any dimension d, the principal directions a1, . . . , ad form an orthonor-302

mal basis of a linear space Ld approximating Z. The low dimensional coordi-303

nates are simply the coordinates in this basis. We call residual the difference304

z −∑d
i=1(a′i z)ai between an element of Z and its approximation.305

It can be shown that Ld is such that306

• the sum of squares of the sample residuals is minimised,307

• the sum of squares of the Euclidean distances between sample points308

is best preserved by projection.309

A major advantage of PCA is that those equivalent optimisation problems310

have a closed form solution: the (ai) are the eigen vectors of 1
N

Z′Z, where Z311

is the N × p matrix whose rows are the (zi).312

PCA is efficient, in the sense that it yields good low dimensional ap-313

proximations, when the relations between the p original variables are linear.314

Unfortunately, this is seldom verified when the p original variables are sam-315

pled on a time series or a spatial map.316

Consider for instance a set of time series consisting of a single identical317

bell shaped pulse occurring at varying instants. Discretising it at p evenly318

spaced abscissas yields a p dimensional point cloud as before. This sim-319

ple example devised by Fukunaga and Olsen [9] is actually representative of320

many situation common in atmospheric dispersion: time evolution of a con-321

centration when a plume passes over a recording station, or comparison of322

circular cross sections of plumes with differing orientations. The minimum323

number of parameters needed to reversibly encode a data set without loss of324

information is often referred to as its “intrinsic dimension” [18]. Here, it is325

equal to 1. Indeed, a single scalar, say the abscissa of the top of the bell,326

is sufficient to fully parametrize the set of curves. However, the number of327

principal directions required to achieve a good approximation is close to p.328

In a previous communication [8], we applied PCA to sets of dispersion sim-329

ulations resulting from low dimensional perturbations. While the first two330

or three principal components carried much more information than the sub-331

sequent ones, at least a dozen of them were required to properly encode the332

original dataset. This lack of efficiency even with simple perturbations shows333

that PCA is not well suited for analysing the output of complex perturbation334

schemes.335
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4.2. Non linear dimension reduction with auto-associative models336

The algorithm for building an AAM starts with the N × p sample data337

matrix Z1 = Z whose rows are the (zi), and repeats the following steps for338

k = 1, . . . , p:339

1. Find a direction ak minimising a loss function.340

2. Compute the vector of projection coordinates ck = Zk.341

3. Estimate the recovery function rk, namely an approximation of the342

function linking the components of ck to the rows of Zk.343

4. Set Zk+1 = Zk − Z̃k, where Z̃k is the N × p sample data matrix whose344

rows are the images of the projection coordinates by rk.345

Following the recommendations of Girard and Iovleff [13], we used a loss346

function that best preserves nearest neighbours, and built the recovery (rk)347

with cubic splines. Note that PCA is a linear special case of AAM with the348

loss function given in the previous section, and the linear maps rk : α 7→ α ak349

for recoveries.350

It was shown theoretically that AAM surpasses neural networks with351

simple architectures such as auto-associative perceptron with one hidden352

layer [13]. More sophisticated networks seem capable of good performances353

[22], but they require large training samples. AAM is less inductive, but its354

added rigidity makes it able to cope with small training samples. In that355

respect, our approach is closer to that of Bowman and Woods [5].356

4.3. Compared performances of PCA and AAM357

An important feature that one expects from a good dimension reduction358

technique is the fidelity of the projected data to the original. The quadratic359

mean of the residuals (the difference between projected and original data) is360

a common measure of the missing information in the projection. As a matter361

of fact, principal components are the solution of the minimisation of this very362

quantity. It is also common to normalise this measure by the variance of the363

original data. Indeed, when the data are realisations of random variables, the364

quadratic mean of the residuals is an estimate of the associated variance. This365

allows computing the amount of the overall variance that is explained by each366

projection direction. Following Girard and Iovleff [13], we call “information367

ratio” the sum of the variances explained by a set of directions.368
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Figure 5 compares the information ratios of the AAM and PCA projec-369

tions of increasing dimension. It shows that the first few AAM directions are370

much more informative than that of PCA. Indeed, AMM is able to account371

for almost 80% of the data set variance with two parameters only, while PCA372

needs six directions to catch up with this value.373
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Figure 5: Information ratio of the AAM and PCA projections of increasing dimension.

In the following paragraphs, we compare in more details the AAM and374

PCA 2 dimensional projections. We chose to leave aside subsequent direc-375

tions for three reasons:376

• 2D projections can be plotted and are therefore better suited for our377

illustrative purpose.378

• The limited size of the training sample, 100 simulations, induces a379

significant risk of overfitting. Cross-validation showed indeed that the380

third AAM direction is unreliable for extrapolation.381

• Very low dimensional projection (3D and below) are the most versatile.382

Many methods stop working in dimension 4 and above.383

Each row of figure 6 shows a group of three simulated maps whose pro-384

jections are close to one another in the 2D AAM coordinate system. They385

are labelled by coloured letters that locate them the scatter plot of the 2D386

AAM coordinate system in figure 7. The simulated maps within a group are387

similar, while maps from different groups are dissimilar. Each groups can be388

characterised by the main features of the exceedance area (contoured in pale389

red), namely an extension towards the south-east direction, and the direction390

and width of the northern fan shaped area. These observations suggest that391
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Figure 6: Five groups (in rows) of three (in column) simulated maps of maximum con-
centration. Grey shades denote maximum concentration (log transformed for legibility).
The areas of threshold exceedance are contoured in pale red. Groups locations in the 2D
AAM coordinate system are marked by large coloured circles in figure 7.
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Figure 7: Scatter plot of the 100 simulations projected in the 2D AAM coordinate
system. Each grey dot or red pentagon represents one simulation. Coloured circle and red
pentagons highlight sets of simulations referenced in the text.

2D AAM coordinate system is able to capture the overall structure of the392

data set.393

The left and right plots of figure 8 compare the errors induced by 2D pro-394

jection with PCA and AAM respectively. Each row corresponds to one sim-395

ulation whose location in the 2D AAM coordinate system is marked in figure396

7 by the red pentagon with corresponding number. Green tint indicates area397

where exceedance is correctly predicted after projection. Orange (respec-398

tively purple) tint indicates area of false positives (respectively negatives). A399

false positive (respectively negative) understands here as exceedance (respec-400

tively non exceedance) at a given location in the projected map when the401

threshold is not exceeded (respectively exceeded) in the original map. These402

examples show that AAM almost always outperform PCA: the orange and403

purple areas in the right column are smaller than in the right. AAM even404

achieve perfect reconstructions in some regions of the 2D coordinate system,405

for instance the row 1, 3 and 6 of figure 8. These observations also apply to406

the other areas of the 2D coordinate system not shown here.407
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Figure 8: Comparison of errors induced by projection with PCA (left column) and AAM
(right column). Each row correspond to a given original map, whose locations in the 2D
AAM coordinate system are marked by numbered red pentagon in figure 7.
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5. Conclusion408

We proposed a generic mathematical framework aimed at modelling un-409

certainties in 3D atmospheric dispersion simulations. It relies on stochastic410

perturbations of both the amplitude and dynamics of the physical model in-411

puts time series. These perturbations have a tuneable temporal structure,412

allowing for more refined uncertainty modelling than the constant perturba-413

tion of amplitude only that prevails in the literature.414

To exemplify the practical use of the method, we considered a complex ac-415

cidental situation on a rough and built-up terrain characterized by uncertain416

release and meteorological conditions (wind direction, wind speed and pre-417

cipitations). This realistic case study showed that the probabilistic decision418

map obtained by uncertainty propagation can significantly impact decision.419

The main open issue with uncertainty propagation is the limited sample420

size than can be achieved in the short time spans characteristic of crisis con-421

texts. In such situations, reliable exceedance probability estimates require422

more advanced methods, such as model emulation. This raises another diffi-423

culty, namely that those methods apply to scalar output models, not model424

whose output is a spatial map. We argued that PCA, despite its ubiquitous425

usage, is ill fitted for dimension reduction of such data sets, but showed that426

AAM can overcome the shortcomings of PCA. The next step will be to lever-427

age AAM dimension reduction to build an emulator. A possible approach is428

to build one emulator for each AAM coordinate, for instance using Gaussian429

process regression.430

Contrary to situations where data is available, the structure of uncer-431

tainty models used in crisis contexts are mostly postulated. The motivation432

for adding a temporal structure to perturbations is to explore more exhaus-433

tively the possible outcomes of an accident. A topic for future experimen-434

tation would be to assess the relative influence of the parameters control-435

ling that structure, and compare probabilistic decisions obtained with un-436

certainty models of increasing complexity. The choice of appropriate metrics437

for comparing decision boundaries is itself an interesting matter of investiga-438

tion. AAM could provide additional comparison criteria based on topological439

properties of the set of output maps.440
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