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Abstract: This paper presents a generic mathematical framework for modelling uncertainties in 3D atmospheric 

dispersion simulations. It is exemplified by an accidental release from a very complex rough and built-up area. The 

next step will be to analyse the resulting set of concentration maps by statistical learning of an underlying manifold 

using an auto-associative model. 
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INTRODUCTION 

Modern 3D modelling systems are capable of precisely simulating atmospheric dispersion of hazardous 

material, notably by accounting for the effect of the topography and buildings on the flow and dispersion. 

They are used to evaluate the impact of hazardous materials releases on human health for both regulatory 

purpose and emergency preparedness or response. However, the input data describing meteorological 

conditions and the release itself are often highly uncertain. 

This paper presents a generic mathematical framework for modelling those uncertainties by perturbation 

of a conjecture. It allows a thorough exploration of the possible outcomes by Monte Carlo methods, while 

preserving physical consistency and limiting the number of tuning parameters. We implemented 

conjecture perturbation in a cascade modelling chain involving WRF meteorological forecast model and 

PMSS flow and dispersion modelling system. It is exemplified by an accidental release from a very 

complex rough and built-up area. 

The output of the physical model is a spatial map of a quantity, here the maximum concentration reached 

during the considered time interval. We present an innovative approach for analysing such set of maps by 

statistical learning of an underlying manifold using an auto-associative model. It allows assessing the 

reliability of the probabilistic diagnosis, as well as extracting physically meaningful features. The Monte 

Carlo simulations for the above mentioned case study are under way. The complete analysis will be 

presented at the conference. 

 



 

MOTIVATING CASE STUDY: EXTENDED RELEASE FROM A CHEMICAL FACILITY 

We consider the following idealised decision problem. Hazardous material is released in the atmosphere 

during a given period of time. A physical model simulates the transport and dispersion in the atmosphere, 

the deposition by rain, and computes concentration near the ground. We want to decide in advance if a 

given threshold, possibly leading to health consequences, is exceeded. In our case, the threshold is based 

on the maximum reached concentration.  The exceedance of the threshold in a geographical area might 

lead to decision-taking like shelter or evacuate the population of the area. 

This decision making scenario is inspired by a real industrial incident that happened on January 2013 at 

the Lubrizol chemical plant located in Rouen, France. Operation mistakes and minor system failures in 

the plant resulted in extended release of hydrogen sulphur and mercaptan, which are both foul-smelling. 

The major part of the material inventory was emitted between Monday 21th evening to Tuesday 22th 

morning (IMPEL, 2013). The wind blew the plume as far as Paris during Monday night and towards 

London on Tuesday. Thousands of people have complained of nausea and headaches. 

 

Physical model 

The dispersion simulations will be carried out with Parallel-Micro-SWIFT-SPRAY (PMSS). Originally, 

Micro-SWIFT-SPRAY (MSS) (Tinarelli et al., 2012) was developed in order to provide a simplified, but 

rigorous CFD solution of the flow and dispersion in built-up environments in a limited amount of time. 

MSS encompasses the local scale high resolution versions of the SWIFT and SPRAY models. SWIFT is a 

3D terrain-following mass-consistent diagnostic model taking account of the buildings and providing the 

3D fields of wind, turbulence, and temperature. SWIFT interpolates between meteorological 

measurements (ground stations and vertical profiles), numerical data issued by meso-scale simulations (as 

in the present work) and, possibly, analytical relations of the flow influenced by the buildings 

(displacement zone, wake zone, skimming zone, etc.). SPRAY is a 3D Lagrangian Particle Dispersion 

Model able to account for the presence of buildings. Both SWIFT and SPRAY can deal with complex 

terrains and evolving meteorological conditions and with specific features of the release (heavy gas, light 

gas, etc.). More recently, SWIFT and SPRAY have been efficiently parallelized in time, space, and 

numerical particles leading to the PMSS system (Oldrini, Armand et al., 2017). 

 

Deterministic decision boundary 

The source is located in the middle of the simulation domain, a square with side length of about 35 km. In 

a deterministic framework, a single simulation is run using the most credible values for the model inputs. 

Later on, we call this set of values the (input) conjecture, and likewise we refer to the concentration 

simulated using them as conjectured concentrations. We wish to seek for each location where the 

maximum over time of the conjectured concentration exceeds a given threshold, possibly associated with 

any health damage or the olfaction limit of the released hazmat. The maximum over time of the 

conjectured concentrations are shown in Figure 1a. From this field, we determine the deterministic area 

where the olfaction threshold is exceeded. This is the blue coloured area in Figure 1b. 

 

   

Figure 1. (a – left) Maximum over time of the conjectured concentrations.  

(b – right) Deterministic area where the olfaction threshold of the released hazmat is exceeded. 



 

Uncertain inputs 

The conjecture comprises any model input that is issued from partial or imprecise observations, or from 

other physical model simulations, and possibly also model parameters that implicitly account for the 

unavoidable discrepancy between the real complex system under study, and its idealised mathematical 

representation. We focus here on three uncertain input data known to have a substantial impact on 

simulation output (Aguirre Martinez et al., 2016; Girard, Mallet et al., 2016), all of which are high 

dimensional and have complex physically meaningful structures: 

 the rate of emission of material at the source is a time series, called later on the source term, 

 the rain intensity is a scalar spatio-temporal field, 

 and wind velocity and direction is a vector spatio-temporal field. 

The conjectured source term was adapted from data established by Ismert and Durif (2014). All 

meteorological inputs (rain and wind fields in particular) were obtained from the community 

reconstruction and forecast meso-scale modelling system WRF whose horizontal resolution was 1 km. 

For the wind, we used a set of 514 vertical profiles of the horizontal components, and we kept the 21 

vertical layers below 3 km above ground level (AGL), plus surface data at 10 m AGL. WRF simulations 

are sampled every 15 minutes, and we used the 141 time steps from 21/01/2013 07:00 to 22/01/2013 

18:00. 

 

MATHEMATICAL FORMALISATION OF THE DECISION PROBLEM 

We tackle the decision problem stated in the previous section from the viewpoint of uncertainty 

propagation. We need the probability distribution of maximum concentrations, but cannot model it 

directly. Instead, we modelled the uncertainty of the most influential inputs of the physical model. The 

chain of functions involved is represented on Figure 2. 

The atmospheric dispersion model is a deterministic function denoted by 𝑓 . The output of 𝑓  is the 

maximum concentration (or the concentration greater than a threshold exceedance) 𝑧 as a function of 

location 𝑠 and time 𝑡. The random vector 𝑌 is the perturbed conjecture and models the input uncertainty. 

Here 𝑌  represents jointly the source term, and the rain and wind fields. We want to uncover the 

distribution of 𝑍(𝑠), the random vector corresponding to 𝑧(𝑠). It represents the spatial repartition of 

maximum concentrations (or concentrations greater than a threshold value), which can be represented by 

a map such as that displayed in Figure 1a (or 1b). 

“Decision maps” are obtained from maximum concentration maps by setting each cell to 1 if the chosen 

threshold is exceeded and 0 otherwise. Averaging a set of decision maps yields an estimator of the 

probability of exceedance. Taking a decision implies to admit a fixed risk of committing a specified error. 

 

Figure 2. Function chain of the simulation process. Capital framed letters 

designate random vectors. Arrows annotated in italic designate functions. 



 

For instance, evacuation is decided at locations where the average of decision map exceeds 5%. 

Generic amplitude and dynamics perturbation scheme 

Our probabilistic model of input uncertainty is based on perturbations of the conjecture. In Figure 2, 

conjectures of diverse dimensions are grouped by a brace, and the random perturbations are denoted 𝑋. 

We generalised and unified the perturbation schemes previously designed for modelling wind field 

uncertainty (Duchenne et al., 2017). 

Let 𝑌(𝑠, 𝑡) be the spatio-temporal random vector obtained by perturbation of a conjecture 𝑐(𝑠, 𝑡). We 

adopted the following generic perturbation: 

 𝑌(𝑠, 𝑡) = 𝛤(𝑠, 𝛩(𝑡))𝑐(𝑠, 𝛩(𝑡)) + 𝛬(𝑠, 𝛩(𝑡)).   
 

The random vector 𝛤 (resp. 𝛬) is a multiplicative (resp. additive) perturbation of the amplitude of the 

conjecture, that we will call the “gain” (resp. “offset”) perturbation. The random function  is the 

perturbation of the dynamics of the conjecture. 

The spatio-temporal structure of each element of the perturbation must be postulated. We chose to impose 

smooth oscillating temporal variations and have the perturbation depend on the location only through the 

conjecture. We formulated the temporal structure of the gain and offset perturbation using the phase 

rotation technique, namely the summation of cosine with random phases. The gain (resp. offset) 

perturbation writes: 

 𝛤(𝑠, 𝑡) = 𝜎𝑐(𝑠, 𝑡) ∑ 𝑊𝛤,𝑘

𝐾

𝑘=1

𝑐𝑜𝑠(2𝜋𝜔𝑘𝑡 + 𝛹𝑘).   

 

When the phases 𝛹𝑘  are independent and uniformly distributed on [0,2𝜋], this formulation produces 

smoothly oscillating signals. The set of periods 𝛺 = {𝜔𝑘: 1 ≤ 𝑘 ≤ 𝐾} controls the temporal structure of 

those signals and must be postulated, as well as the distribution of the set of amplitudes 𝑊𝛤 =

{𝑊𝛤,𝑘: 1 ≤ 𝑘 ≤ 𝐾}. The function 𝜎𝑐 is arbitrary and is used mostly for either restricting the perturbation 

to a given time span, or make it depend on the intrinsic variability of the conjecture. 

The random function 𝛩 models the uncertainty on the dynamics of the conjecture by altering time. At any 

given instant 𝑡, an interval warp function 𝜙 expands or contract a time interval 𝛥𝑡 by a factor 𝛽(𝑡) that 

varies in time:  

 𝜃: 𝑡, 𝛥𝑡 ↦ 𝜙(𝑡, 𝛥𝑡) = 𝛽(𝑡)𝛥𝑡.   

We then define the associated time warp function 𝜃 mapping any instant 𝑡𝑖 from {𝑡0 = 0, 𝑡1, … , 𝑡𝑞 = 𝑇} to 

the warped instant: 

 𝜃(𝑡𝑖) =
𝑇

∑ 𝜙
𝑞−1
𝑗=0 (𝑡𝑗 , 𝑡𝑗+1 − 𝑡𝑗)

∑ 𝜙

𝑗

𝑗=0

(𝑡𝑗, 𝑡𝑗+1 − 𝑡𝑗).   

 

We further constrain the time warp functions to preserve the time origin: 𝜃(𝑡0 = 0) = 𝑡0 = 0 . By 

definition, time warp functions also preserve the total duration 𝜃(𝑡𝑞 = 𝑇) = 𝑡𝑞 = 𝑇. 

We used again phase rotation to define the distribution 𝛩 of time warp functions, resulting in smooth time 

structure for the dynamics perturbation. In practice, the warped time series 𝑦(𝑠, 𝑡) are obtained by first 

applying the gain and offset perturbation to the conjecture, and then interpolating the resulting time series 

at the warped instants {𝜃(𝑡0), 𝜃(𝑡1), … , 𝜃(𝑡𝑞)}. 

 

ANALYSIS OF SET SPATIAL MAPS BY MANIFOLD LEARNING 

As discussed in the previous section, the predictions of the physical model are spatio-temporal quantities, 

and the decision is based on a set of spatial maps. Sampling these maps at the 𝑝 nodes of a grid, we obtain 

𝑝 random variables, depending intricately on each other. The set of 𝑛 maps can then be seen as a cloud of 

𝑛 points in ℝ𝑝. Because the decision problem we consider is posed in a crisis context, time, and therefore 

sample size, is limited. Besides, the most interesting exceedance probabilities are small, 5% or lower, 

which require a large sample to be estimated accurately. Straightforward uncertainty propagation is thus 



 

unlikely to succeed and we have to resort to either model emulation (Aguirre Martinez et al., 2016; 

Aguirre and Yalamas, 2014; Sylvain Girard, Mallet et al., 2016; Mallet et al., 2018), namely mathematical 

approximation of the physical model, or more efficient sampling strategies such as weighted sampling or 

Monte Carlo Markov chain. Either of those approaches are intractable in high dimension, namely when 𝑝 

exceeds a few units. 

 

Limitations of principal component analysis 

Principal component analysis (PCA) is a century old method used extensively in data analysis (Jolliffe 

and Cadima, 2016). It can be considered the state of the art for dimension reduction in the specific field of 

dispersion simulation (Mallet et al., 2018; Swallow et al., 2017; Tran Le et al., 2018). Informally, PCA 

finds the cube of smallest dimension 𝑑𝑙 that best contain a given point cloud in ℝ𝑝. The number 𝑑𝑙 ≤ 𝑝 is 

called the linear dimension of the point cloud. Each point 𝑥 in ℝ𝑝 is then associated to the point of ℝ𝑙
𝑑 

whose coordinates are the orthogonal projections of 𝑥 onto the sides of the cube. This defines 𝑑𝑙  new 

variables, the principal components, by linear combination of the 𝑝 original variables. This method is 

efficient when there are indeed linear relations between the 𝑝 original variables that allow summarizing 

the point cloud. Unfortunately, it is often not the case when the 𝑝 original variables are sampled on the 

time series or on a spatial map. 

Consider for instance a set of time series consisting of a Gaussian pulse, a bell shaped spike, shifted along 

an abscissa. Sampling it at 𝑝 evenly spaced abscissas yields a p-dimensional point cloud as before. This 

very simple example devised by Fukunaga and Olsen (1971) is actually representative of many situation 

common in atmospheric dispersion: time evolution of a concentration when a plume passes over a 

recording station, or comparison of circular cross sections of plumes at various angles. A single scalar, say 

the abscissa of the top of the bell, is sufficient to fully parametrize the set of curves. We will say that the 

intrinsic dimension of the data set 𝑑𝑖 is equal to 1. However, the relation between the 𝑝 original variables 

being non-linear, the linear dimension is much larger than the intrinsic dimension, 𝑑𝑖 ≪ 𝑑𝑙 , and PCA fails 

to achieve satisfying dimension reduction. 

In a previous communication (Duchenne et al., 2017), we applied PCA to sets of dispersion simulations 

resulting from low dimensional perturbations. While the first 2 or 3 principal components carried much 

more information than the subsequent ones, at least a dozen of them were required to properly encode the 

original dataset. This lack of efficiency even with simple perturbations means that PCA will not be 

adapted to analyse the output of complex perturbation scheme. 

 

Manifold learning by auto-associative model 

The auto-associative model (AAM) proposed by Stéphane Girard and Iovleff (2008) can be seen as a non-

linear extension of PCA. The point cloud is assumed to hover close to a manifold instead of a cube. A 

manifold of dimension 𝑑  is a set that is topologically locally equivalent to a d-dimensional cube. It 

handles non linearity and can generally achieve reduction to dimension equal or close to the intrinsic 

dimension while preserving the fidelity of the reconstruction. 

In a recent experiment, AAM allowed to automatically extract physically meaningful structure from a set 

of simulated responses of a perturbed dynamic system (Gerrer and Girard, 2019). AAM applied to the two 

previously mentioned sets of decisions maps (Duchenne et al., 2017) yielded representations of dimension 

2 and 3, which are most likely the actual intrinsic dimension of the sets. One of the main objectives of the 

future work will be to investigate the ability of AAM to analyse point cloud of higher dimension, like the 

set of decision maps resulting from the perturbation scheme described in the paper. 

 

CONCLUSION 

In this paper, we introduce a generic mathematical framework aimed at modelling uncertainties in 3D 

atmospheric dispersion simulations. To exemplify the practical use of the method, we consider a complex 

accidental situation on a rough and built-up terrain characterized by uncertain release and meteorological 

conditions (wind direction, wind force and precipitations) which are outputs of the WRF model. The next 

steps will be first to produce a set of concentration maps with the PMSS modelling system by varying the 

uncertain parameters, and then, to analyse the resulting set of maps by statistical learning of an underlying 



 

manifold using an auto-associative model. 
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