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Résumé:

Un modele de systéme 0D/1D est une représentation math-
ématique du comportement dynamique et des interactions
entre les parties d’un systéme complexe. Modelica est un
langage pour programmer de tels modeles a I’aide d’équations
différentielles. Grace au paradigme orienté objet, il permet
de constituer des bibliotheques de parties de modeles réutil-
isables, ou modules. Enrichir ces modéles par apprentissage
statistique et interpréter leurs prédictions en termes proba-
bilistes constitue une excellente démarche pour la gestion des
risques industriels. Nous illustrons comment elle peut-étre
mise en ceuvre efficacement avec Python et la norme func-
tional mock-up interface. L’exemple traité est la prédiction de
la longévité des batteries de bus hybrides. D’abord du point
de vue global, adopté lors des phases précoces de conception,
puis pour des véhicules roulants suivis individuellement.

Summary:

A 0D/1D system model is a mathematical of the dynamic
behaviour and interactions between the parts of a complex
system. Modelica is a language for programming such models
using differential equations. By leveraging the object oriented
paradigm, it enables to reuse model components, collected
in library of modules. Difficult industrial risk management
problems can be tackled by supplementing these models
with empirical information through statistical learning, and
interpreting their predictions from a probabilistic standpoint.
We illustrate how this can be efficiently achieved using the
Python programming language and the functional mock-
up interface standard. We studied the case of predicting
the longevity of hybrid bus batteries. First in general, as
called for in early design phases, and then for individually
monitored vehicles.

Statistics meets 0D /1D system models

By system model we designate a global mathematical de-
scription of a complex physical system whose aim is more to
reproduce the interactions between the parts of the system,
than the detail of the individual physical phenomena. This
voluntary loose definition does not draw a clear line between
system models and what could be called component models.
Indeed, such a delimitation depends on the context and
especially on the purpose of the model, namely on what
scientific or industrial problems it was designed to solve
(Girard et al., 2017). The models we have in mind are usually
sets of equations that are solved without resorting to com-
putationally intensive methods such as finite elements, nor
require the approximation of geometric domains by meshes,
hence the denomination “0D/1D”. As the dynamic behaviour
of the system is often of great interest, these macroscopic de-
scriptions are often formulated as time differential equations.

Modelica (Modelica, A Unified Object-Oriented Language
for Systems Modeling — Language Specification 2014; Tiller,
2015) is a programming language particularly well suited
for designing 0D/1D system models. A Modelica model is
a system of differential equations written in almost natural
(mathematical) language, efficiently organised and struc-
tured thanks to the object-oriented programming paradigm.
The solution of these equations is obtained by dedicated mul-
tipurpose third-party tools such as the commercial software

Dymolal or the open source OpenModelica?.

Probabilistic modelling and statistical learning have the
potential to vastly enrich the predictions of numerical model
used to solve industrial problems. Uncertainty can be ap-
prehended through propagation, sensitivity analysis provides
insights to the design of model itself, emulation of models
overcomes computational cost issues, statistics is an appro-
priate framework for calibration or parameter estimation,
data assimilation allows to incorporate information from
observations into the predictions etc. Many of the aforesaid
methods are non-intrusive: they apply to inputs and outputs
linked by a mathematical function representing the numeri-
cal model. This black box approach to computer experiments
has been formalised into the functional mock-up interface
(FMI) standard (Functional mock-up interface for model
exchange and co-simulation 2014). It specifies input and
output data interfaces to numerical models implemented by
collecting into zip archives called functional mock-up unit
(FMU) an XML file describing the variables of the model,
and a set of possibly compiled C functions for carrying
out the simulation. Most tools dealing with Modelica are
compatible with the FMI standard, allowing to compile or
pilot FMUs.

The PyFMI module® (Andersson et al., 2016) brought FMUs

Lhttps://www.3ds.com/products-services/catia/
products/dymola/

2https://www.openmodelica.org/

Shttp://www.jmodelica.org/page/4924



into the Python universe. Python is a very apt language
for computer experiments and statistical analysis. It pro-
vides a plethora of specialised modules, for instance Dask
for large scale problems or TensorFlow and Theano for
designing neural networks, and generic packages, such as
Numpy, Scipy, Scikit-learn, Statsmodels, Pandas... Among
them, OpenTURNS was recently extended by a plugin mod-
ule, Otfmi?, relying on PyFMI to enable transparent calls to
FMUs (Girard, 2017).

Python and Modelica both are user-friendly and encourage
modularity. The case of battery longevity prediction studied
here is an attempt to illustrate how the combination of these
two languages offers opportunities for fast paced yet rigorous
industrial problem solving. The physical and statistical mod-
els that were created to simulate the battery ageing process
are first presented. Then two illustrative applications are
presented in the second part of the article.

Physical and statistical models for
battery longevity prediction

Batteries are responsible for about half of the price of an
hybrid electric bus. Hence their longevity strongly impacts
the cost of possession and is of prime interest to fleet oper-
ators. Battery ageing mechanisms are multiple and complex
(Catton, 2017; Vetter et al., 2005) but can be regrouped into
calendar, namely continuous physico-chemical reactions, and
cycling, those driven by consecutive charge and discharge
cycles. Both calendar and cycling ageing are strongly im-
pacted by temperature. A commonplace rule of thumb is
that batteries age twice as fast with every 10 °C increase. We
devised a panoply of models to predict battery ageing while
taking into account the uncertainty induced by temperature
fluctuations. Section 1 presents the ageing model itself and
the way it depends on temperature. The thermodynamical
model described in section 2 outputs the temperature of
the battery given an input ambient temperature time series.
Finally, a stochastic model simulating battery temperature
fluctuation based on past ambient input temperature obser-
vations is detailed in section 3.

1. Empirical ageing model

There is vast body of literature on models for predicting
battery degradation ranging from essentially mechanistic
models describing electrochemical reactions in details to
more macroscopic models with much fewer parameters (Jin
et al., 2018). We settled here for the latter and adopted an
empirical formulation, assuming that battery damage, for
instance measured as capacity loss, is the sum of calendar
and cycling contributions (Shojaei et al., 2017b):

0 = 0ca1 + deye, (1)

where the cal and cyc indices refer to calendar and cycling
ageing.

A battery stored at constant temperature usually ages pro-
portionally to the square-root of time. It was shown by
Ploehn et al. (2004) that this could be explained as resulting
from the diffusion-limited growth of a resistive film layer
at the electrode surface. In order to perform dynamical
simulations, we assumed film growth to be indeed the domi-
nant mechanism and related the calendar ageing rate to the
current state of health of the battery through the following
differential formulation:

dacal
dt

where A, is a temperature dependent coefficient.

5 = Aca(T)?/2, 2)

4https://github.com/openturns/otfmi

We assumed that cycling damage is proportional to the num-
ber of consecutive identical cycles of charge and discharge
(Rugh et al., 2013), which we formulated as:

d5cyc
dt

where Acyc is a temperature dependent coefficient, and U (t)
a factor varying in time according to battery usage. Given a
reference cycle, with charge or discharge rate p;, of duration
7 and causing a damage of §,, the instantaneous usage
factor is proportional to the current rate p(t):

p(t). (4)

= U(t)Acyc(T), (3)

or

Ut) =

PrTr
The temperature dependence of both mechanisms was as-
sumed to follow Arrhenius’ law:
E
A(T) = aexp(———), 5
(T) = aexp(— =) (5)
where K denotes Boltzmann’s constant. The two parameters

«, the pre-exponential factor, and F, the activation energy,
are to be estimated from experimental data.

The system of differential equations described above was
programmed in Modelica and compiled to FMU using the
OpenModelica compiler.

2. Thermodynamical model

Simply equating the battery temperature with the ambient
temperature would be a very rough approximation: the bat-
tery is not in direct contact with the outside air, as any solid
body it has a thermal inertia, its functioning generates heat,
and it exchanges thermal energy with the vehicle cabin whose
temperature is controlled during drive. .. We settled here for
a lumped formulation that takes these factors into account
while enabling fast simulation.

The main equation of the model stems from Newton’s law of
cooling:
dT

CE = Qambiant + Qcabin + Qcool + Qgeneration7 (6)

where @ denotes heat fluxes, T' the battery temperature,
and C its specific heat capacity whose value was set to
3000 J kg~! K based on experiment conducted by EDF (Dur-
cik, 2015). The heat exchanges with the cabin and ambient
air were both modelled as

o==1, ™

where AT is the difference between the considered temper-
ature and that of the battery, and R a thermal resistance.
We used values given by Shojaei et al. (2017a). In particular,
the heat exchange with ambient air is about twice as efficient
when the bus is moving, meaning that the corresponding
thermal resistance is halved. The dynamics of the temper-
ature in the cabin was modelled in the same fashion as that
of the battery: it exchanges heat with the exterior and, when
on, with the air conditioning cold source. It was tuned such
that the cabin temperature is around 22 °C during driving
periods, and following ambient temperature in idle time.
The battery cooling system is triggered when the battery
temperature approaches 35 °C. It ensues a negative heat flux
Qc001 Which goes back to zero when the temperature rise is
mitigated. The internal heat generation term Qgenemtion is
null when the battery is not functioning, and constant during
charge or drive. It was set to a value of 0,016 C' based on the
experiments of Pesaran (2002).

This thermodynamical model was programmed in Modelica
and compiled to FMU using the OpenModelica compiler.
The resulting dynamics is illustrated in figure 1 depicting the
battery response to input ambient temperature measured at
Perpignan in 1996. The battery is charging from 4:00 to 7:00,
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Figure 1. Simulation of the battery temperature dynamics
in summer (top) and winter (bottom) in 1996 in Perpignan.
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Figure 2. Example of battery temperature simulation
(orange, right-hand side) prolonging the Perpignan training
data (purple, left-hand side).

and the bus is driving from 7:00 to 19:00. Air conditioning is
on when the bus is driving. In winter, the cabin is actually
heated and pulls battery temperature to a plateau around
22 °C during the day, while it falls back to ambient temper-
ature during the night. Battery temperature variation are
smoother in summer when the ambient temperature span
comprises the target cabin temperature.

3. Stochastic weather model

MétéoFrance freely provides meteorological data measured
during the last twenty years by weather stations spread
on the French territory (MétéoFrance, 2017). We collected
ambient air temperature in two cities, Lille and Perpignan,
sampled at a 3h rate from 1996 to 2016. Lille (N50°38'14"
E3°3'48""), the “Capital of French Flanders”, close to the
Belgian border, has a temperate oceanic climate. Perpignan
(N42°41'55" E2°53/44"") was the capital of the former King-
dom of Majorca which straddled today’s France and Spain.
It has a Mediterranean climate.

These input data were fed to the thermodynamical model
presented in the previous section to produce training signal
of battery temperature. The Perpignan training signal is
plotted in purple on the left-hand side of figure 2.

Temperature signals display repetitive structures at different
periods, called seasonal pattern. The most obvious of these
patterns are the cycle of actual seasons (winter is colder
than summer), and the alternance of night and day. The
erratic fluctuations on top of those structures are strongly
auto-correlated, both because of the thermal inertia of the
system and the dynamics of their causes, for instance the
cloud cover.

Modelling these behaviours is but a means towards simulat-
ing battery ageing. Hence, we used the characteristic time
period of the combined ageing mechanisms to decide which
seasonal structures and correlations should be modelled, and

which can be safely neglected. Consider for instance sys-
tematically exchanging Mondays, Tuesdays and Wednesdays
with Thursdays, Fridays and Saturdays in the input temper-
ature signal: the day-to-day correlation structure would be
upset but the effect on the overall ageing would be negligible.
Battery age by 1 % in about one month on average during the
initial phase of the ageing process, from 0 % to 3 % of damage
when ageing is the most rapid and non-linear in time, and has
a determining effect on the subsequent evolution. Based on
that consideration, the average temperatures during charge
(from 4:00 to 7:00), drive (from 7:00 to 19:00) and idle time
(from 19:00 to 3:00) were modelled independently.

Each signals was split into a sum of a seasonal and an
erratic parts by separating the terms of its Fourier decom-
position whose periods are above 30 days from the higher
frequency ones. The low frequency part was sliced by year,
producing a table with 20 rows (each year is an individual)
and 365 columns (each day is a variable), whose principal
components (Jolliffe et al., 2016) were computed. The yearly
seasonal structure could be reasonably well captured by 2
principal components. We modelled the joint distribution
of their scores by kernel density estimation (Hastie et al.,
2001), which enables us to simulate years of low frequency
temperature fluctuations. The unstructured remainder corre-
sponding to the 363 unused principal components, was added
to the high frequency part of the signal.

Then the high frequency part was modelled by kernel density
estimation, conditionally on the day number using a window
of 7 days. By doing so, we preserve the evolution of the
daily variability during the year but abandon the correlation
between the temperature of successive days.

An example of battery temperature simulation is plotted in
orange on the right-hand side of figure 2. The annual patterns
and year-to-year variability are adequately reproduced.

Uncertainty propagation and parameter
estimation

The thermodynamical model described in section 2 was used
only twice, once for each city, to simulate battery temper-
ature time series from the 20 year ambient temperature
records in Lille and Perpignan. The stochastic models fitted
to these two time series, as accounted by section 3, allow
us to sample the probability distribution of the battery
temperature fluctuations during the, say, next 10 years. In
section 1, 4 parameters governing the influence of tempera-
ture on ageing through Arrhenius’ law, 2 for each mechanism,
were introduced. The estimation of these parameters and
the associated uncertainty is discussed in section 1. The
uncertainty on both temperature and Arrhenius parameters
was propagated through the ageing model to study the
influence of the geographic location on ageing. The analysis
of the resulting sample applies to all batteries of a given type.
It would be typically carried out during the design phase,
for instance to arbitrate technological decisions, or to build
a business plan for a reprocessing and disposal process.

The case studied in section 2 lies downstream in the system’s
life cycle: hybrid buses are now driving and we would like to
monitor the ageing process of their battery individually.

1. Influence of geographic location on ageing rate

The two pairs of Arrhenius parameters related to calendar
and cycling ageing were estimated by classical regression
techniques on experimental data representative of Li-Ion
battery used by the automotive industry (Durcik, 2015;
Grolleau, 2015; Rugh et al., 2013). This approach induces
a strong dependence between parameters related to the
same mechanism. Put another way, the likelihood of the
observations is high in a narrow band of exponential shape
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Figure 3. Ageing prediction and associated uncertainty for
batteries in Perpignan and Lille.

in the {pre-exponential factor ; activation energy} plan, and
nearly zero everywhere else. Sampling the parameters inde-
pendently would be obviously wrong. Instead, we modelled
the uncertainty of the data points by confronting comparable
experiments. Simulation of the joint probability of a pair of
parameters was later carried out by repeated regression on
data perturbed according to these experimental uncertainty
models. Finally, our global black box ageing model can
be thought to have 3 uncertain inputs: the temperature
fluctuations and the two pairs of Arrhenius parameters.

We generated samples of 1000 ageing realisations in both
Lille and Perpignan. The sample averages of the damage are
plotted as lines in figure 3, surrounded by symmetric 95 %
confidence intervals depicted as flat tints. The damage in
Perpignan is significantly higher than in Lille after a little
less than 5 months. The divergence occurs at an upwards
inflexion of the damage slope, corresponding to the onset of
the first summer of operation (simulations starts on the 1st
of January).

The uncertainty of damage prediction, measured as the
width of confidence interval, is roughly the same in the
two cities. Its growth is very steep in the first few months,
then decelerates to a constant rate of about 0,20 points
per year after one semester. Recall that calendar ageing
is proportional to the square root of time, while cycling
ageing is linear in time because we applied constant cycles.
At the end of the 10 years simulation interval, the battery
damage reached 26,29 (95%CI: 24,85 to 27,72) points in
Perpignan and 22,28 (95%CI: 20,77 to 23,81) points in Lille.
The corresponding interval widths are therefore 2,88 points
(10,94 % relative uncertainty) in Perpignan, and 3,04 points
(13,63 % relative uncertainty) in Lille.

The longevity of a battery is defined as the time before
it reaches a given damage threshold. Figure 4 displays the
distribution of battery longevity in Perpignan and Lille for a
threshold of 20 % of damage. The 20 % of damage longevity is
significantly smaller in Perpignan, 6,32 (95%CI: 5,73 to 6,85)
years, than in Lille, 8,39 (95%CI: 7,53 to 9,45) years. The
same goes for the associated relative uncertainty: 17,81 % in
Perpignan versus 22,88 % in Lille.

2. Predictive monitoring of a battery longevity

Let assume that the sate of health of a battery has been
evaluated 3 times during its first year of usage. Damage
observation are plotted as green dots in figure 5. We sam-
pled 1000 sets of Arrhenius parameters from the prior distri-
bution described in the previous section and simulated the
corresponding damage trajectories using the same input am-
bient temperature, assumed to be known from measurement
of a the Perpignan weather station.

Discrepancies between simulated damage trajectories and
observations stem from the combination of modelling and
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Figure 4. Relative frequencies of battery longevity in
Perpignan and Lille for a threshold of 20 % of damage.
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Figure 5. Damage observations (blue dots) and 1000 prior
simulations for the year 1996 in Perpignan. The tint of the
simulation line indicates their relative probability when
sampling with replacement after weighting by the
likelihood.

measurement errors. We postulated a Gaussian structure for
the root mean squared of these difference, and derived likeli-
hood values for each input set of Arrhenius parameters. The
simulated damage trajectories are plotted in figure 5 under
the observation dots with colours indicating the associated
relative likelihood. The best match trajectory is drawn in
black, and the worst in pale yellow.

Calling upon Bayes formula, we then sampled the posterior
distribution of Arrhenius parameters. In practice we sampled
with replacement from the 1000 previous parameter sets,
weighted by their relative likelihood. Finally, for each set
picked that way we simulated 9 years of battery tempera-
ture in Perpignan, and fed them to the ageing model. The
resulting statistics obtained from 1000 such simulations are
displayed in figure 6, with the same graphical conventions as
in figure 3.

The average of damage trajectories is close to that of the
generic a priori simulation (figure 3) because the observations
happened to fall roughly in the middle of the support of the
prior distribution of damages. At the end of the 10 years
interval, the battery damage reached 26,56 (95%CI: 25,60
to 27,52) points. The prediction uncertainty has been sub-
stantially reduced by incorporating the information from the
observations: the posterior relative uncertainty on damage
after 10 years usage is 7,23 %, which is 3,71 points less than
the prior relative uncertainty related in the previous section.

The same comment goes for longevity The 20 % damage
longevity average posterior prediction, 6,19 (95%CI: 5,78 to
6,53) years, is close to the prior prediction, but we achieved a
gain of 5,72 points in relative uncertainty, the posterior value
being 12,09 %.

Interestingly, the relative uncertainty stays below 5% dur-
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Figure 6. Posterior ageing prediction for a given battery
after one year of observation in Perpignan.

ing 3 years following the last temperature and damage
observations. Hence, the above procedure could be used
as a means to monitor and anticipate battery degradation
in order to assist maintenance planning and help making
strategic decisions.

Conclusion

Bridging disciplines, such as different flavours of physical
and probabilistic modelling, is a pivotal requirement for
the safe design and operation of industrial systems. Python
and Modelica are two versatile tools with relatively smooth
learning curves. As a matter of fact, a single engineer or
researcher may master both in a reasonable time, in addition
to its core skills. Such concentrations of abilities are steps
towards bridging disciplines. Hence, along with educational
and organisational measures, a very pragmatic and efficient
course of action to meet the said requirement is to develop
technological interfaces between existing tools. This is driv-
ing idea of the FMI initiative, and the motivation behind
the recent development of the open source Python module
Otfmi.

Another important concept central to the FMI is obviously
standardisation, which allows for automation. As they ma-
ture, mathematical methods usually get more streamlined,
more robust, and their domain of application widen. This
is both the result of the continuous research effort, and
a selection process: the less practical methods are little
used and gradually forgotten. Should technological tools
adequately follow this process, we may hope for a lessening of
the cost (manpower, computer, time) of mobilising advanced
mathematical methods down to the point where they become
common practice among non specialists. The recommenda-
tion that “sensitivity analysis should be used early in the
modelling process, as a safeguard against irrelevant complex-
ity” is a common trope of conferences on the topic. How often
is it carried into effect? There is still some way to go, but a
rapid survey of recent literature allows for optimism.

For the sake of pithiness, the physical models presented
here were kept relatively simple. But, once again, we think
that mathematical analysis of physical models should go
alongside with the design of the model itself. Hence, such a
collection of models should be always thought of as being
in a transitory state, ready to evolve with the perpetual
knowledge and data acquisition and the emergence of new
problems. Keeping up with the hybrid vehicle battery exam-
ple, are we interested into evaluating the energetic cost of
temperature management? Then an extension of thermody-
namical is called for, following for instance the example of
Shojaei et al. (2017a). Some data about the driving cycles
are now available? Maybe it’s time to consider the more
elaborate ageing models described by Jin et al. (2018). We
are convinced that Python and Modelica, completed, while

we are at it, by a version control system such as git®, are
great options for implementing such a workflow.

Acknowledgment

Part of the work presented was motivated by issues raised
during work sessions of the IMdR group “Uncertainty and
industry” (GTR Incertitudes et indutrie). We gratefully
thank the participants for their involvement and fruitful
discussions.

The study of hybrid bus battery longevity was undertaken
within the “Businova Evolution” project, leaded by Safra
and funded by the French Environment € Energy Manage-
ment Agency (ADEM) as part of the Investments for the
Future programme (PIA).

References

Andersson, Christian, Johan Akesson, and Claus Fiihrer
(2016). PyFMI: A Python Package for Simulation of
Coupled Dynamic Models with the Functional Mock-up
Interface. Technical Report in Mathematical Sciences 2.
Centre for Mathematical Sciences, Lund University.

Catton, John (2017). “Calendar Aging and Lifetimes of
LiFePO4 Batteries and Considerations for Repurposing”.
PhD thesis. University of Waterloo.

Durcik, Elie (2015). Caractérisation du pack batterie XSyst7,
Essais fonctionnels et dysfonctionnels. Tech. rep. HM-
29/15/001/A. EDF R&D.

Functional mock-up interface for model exchange and co-
stmulation (2014). version 2.0. Modelica association. URL:
https://www.fmi-standard.org/.

Girard, Sylvain (2017). Otfmi: simulate FMUs from Open-
TURNS: User documentation. Tech. rep. RT-PMFRE-
00997-003. Phimeca.

Girard, Sylvain and Thierry Yalamas (2017). “A
Probabilistic take on system modeling with Modelica
and Python”. Online working paper. URL: https:
/ /www.researchgate.net/publication/321624302__A__
Probabilistic_ take on_ system_modeling with__
Modelica__and_ Python.

Grolleau, Sébastien (2015). “Aging study of state-of-art cells
— cycling aging of lithium-ion batteries”. In: Summer-
School on materials for batteries. EIGSI. La Rochelle,
France.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman
(2001). The elements of statistical learning. Springer Se-
ries in Statistics. URL: http://statweb.stanford.edu/~tibs/
ElemStatLearn/.

Jin, Xing et al. (2018). “Applicability of available Li-ion bat-
tery degradation models for system and control algorithm
design”. In: Control Engineering Practice 71, pp. 1-9.
DpoI: 10.1016/j.conengprac.2017.10.002. URL: https://doi.
org/10.1016/j.conengprac.2017.10.002.

Jolliffe, Tan T. and Jorge Cadima (2016). “Principal com-
ponent analysis: a review and recent developments”. In:
Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences 374.2065,
p- 20150202. por: 10.1098/rsta.2015.0202. URL: https://
doi.org/10.1098 /rsta.2015.0202.

MétéoFrance  (2017).  SYNOP  (surface  synoptic
observations)  meteorological ~ data. URL: https://
donneespubliques.meteofrance.fr/?fond=produit&id__
produit=90&id__rubrique=32.

Modelica, A Unified Object-Oriented Language for Sys-
tems Modeling — Language Specification (2014). Version
3.3 Revision 1. Modelica Association. URL: https://www.
modelica.org/documents//.

Shttps://git-scm.com/



Pesaran, Ahmad A. (2002). “Battery thermal models for
hybrid vehicle simulations”. In: Journal of Power Sources
110.2, pp. 377-382. por: 10.1016/s0378-7753(02)00200-8.
URL: https://doi.org/10.1016/s0378-7753(02)00200-8.

Ploehn, Harry J., Premanand Ramadass, and Ralph E.
White (2004). “Solvent Diffusion Model for Aging of
Lithium-Ion Battery Cells”. In: Journal of The Electro-
chemical Society 151.3, A456. por: 10.1149/1.1644601.
URL: https://doi.org/10.1149/1.1644601.

Rugh, J. P., A. Pesaran, and K. Smith (2013). “Electric
Vehicle Battery Thermal Issues and Thermal Management
Techniques (Presentation)”. In: SAE 2011 Alternative Re-
frigerant and System Efficiency Symposium. NREL (Na-
tional Renewable Energy Laboratory).

Shojaei, Sina et al. (2017a). “Developing a model for analysis
of the cooling loads of a hybrid electric vehicle by using co-
simulations of verified submodels”. In: Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering. DOI: 10.1177/0954407017707099.
URL: https://doi.org/10.1177/0954407017707099.

Shojaei, Sina et al. (2017b). “Improving the Performance
Attributes of Plug-in Hybrid Electric Vehicles in Hot
Climates through Key-Off Battery Cooling”. In: Energies
10.12, p. 2058. DOI: 10.3390/en10122058. URL: https://doi.
org/10.3390/en10122058.

Tiller, Michael M. (2015). Modelica by Ezample. Xogeny.
URL: http://book.xogeny.com/.

Vetter, J. et al. (2005). “Ageing mechanisms in lithium-ion
batteries”. In: Journal of Power Sources 147.1-2; pp. 269—
281. pol: 10.1016/j.jpowsour.2005.01.006. URL: https://
doi.org/10.1016/j.jpowsour.2005.01.006.



