
Screening sensitivity analysis of a radionuclides
atmospheric dispersion model applied to the Fukushima

disaster

Sylvain Girarda,∗, Irène Korsakissoka, Vivien Malletb,c

aInstitut de radioprotection et de sûreté nucléaire, 31, avenue de la Division Leclerc, 92260,
Fontenay-aux-Roses, France

bInria, Domaine de Voluceau, BP 105, 78153, Le Chesnay cedex, France
cCEREA, Joint Laboratory École des Ponts ParisTech/EDF R&D, Université Paris Est,

Marne-la-Vallée, France

Abstract

Numerical models used to forecast the atmospheric dispersion of radionuclides
following nuclear accidents are subject to substantial uncertainties. Input data,
such as meteorological forecasts or source term estimations, as well as poorly
known model parameters contribute for a large part to this uncertainty.

A sensitivity analysis with the method of Morris was carried out in the
case of the Fukushima disaster as a first step towards the uncertainty analysis
of the Polyphemus/Polair3D model. The main difficulties stemmed from the
high dimension of the model’s input and output. Simple perturbations whose
magnitudes were devised from a thorough literature review were applied to 19
uncertain inputs. Several outputs related to atmospheric activity and ground
deposition were aggregated, revealing different inputs rankings. Other inputs
based on gamma dose rates measurements were used to question the possibility
of calibrating the inputs uncertainties.

Some inputs, such as the cloud layer thickness, were found to have little
influence on most considered outputs and could therefore be safely discarded
from further studies. On the contrary, wind perturbations and emission factors
for iodine and caesium are predominant. The performance indicators derived
from dose rates observations displayed strong sensitivities. This emphasises
the share of the overall uncertainty due to input uncertainties and asserts the
relevance of the simple perturbation scheme that was employed in this work.
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1. Introduction1

Numerical simulations of the atmospheric dispersion of radionuclides are2

used during the early stages of nuclear accidents as input to the decision making.3

They also provide a valuable complement to field measurements for the long4

term assessment of environmental and sanitary impact, as illustrated by the5

cases of the Chernobyl and Fukushima disasters.6

The meteorological fields fed into the model are typically issued from opera-7

tional forecasts by meteorological models and involve substantial uncertainties.8

The source term itself is also subject to high uncertainties, even several years9

after the accident. For instance, several estimations of the atmospheric release10

induced by the Fukushima Daiichi power plant have been proposed after the11
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crisis with the help of environmental data (see for instance Terada et al., 2012;1

Stohl et al., 2012; Saunier et al., 2013; Winiarek et al., 2014). Despite the amount2

of field measurements, and the better understanding of the installation events,3

the range of variation in these source terms show that the knowledge of the4

release rate and kinetics is still partial and uncertain. Other important sources5

of uncertainty lie in the dry deposition, the wet scavenging, the computation6

of the vertical diffusion coefficient, and possibly the numerical schemes for the7

integration of the transport equations.8

All these elements have an influence on the output of the model and induce9

uncertainties which undermine predictions solely based on a deterministic ap-10

proach. The present study is a first step in an effort to account for uncertainties11

of the Polyphemus/Polair3D model in predicting the dispersion of an accidental12

release of radionuclides in the atmosphere. It is difficult to study the model in a13

fully generic context because its input include complex spatio-temporal fields.14

The case studied here is the atmospheric release of radionuclides following the15

Fukushima Daiichi disaster.16

Below is a rough outline of how the uncertainty characterisation could be17

carried out:18

1. Determine the main sources of uncertainty and select the input variables19

to the model that adequately represent them.20

2. Define model output variables relevant to crisis management or long-term21

impact evaluation.22

3. Model the uncertainty of each input variable by a random variable with23

given probability distribution.24

4. Propagate the uncertainty with a Monte Carlo scheme by sampling from25

the probability distributions built at step 3.26

5. Use available observations to assess the choice of input variables and27

calibrate the associated uncertainty models.28

This process may be iterated until the output uncertainty is consistent with29

available observations.30

There are several issues that arise when dealing with detailed environmental31

models which are often of high dimensionality and computationally demanding.32

The raw outputs of the dispersion model are spatio-temporal fields of radio-33

nuclides concentrations or gamma dose rates. Simply constructing confidence34

intervals for each species at each time step and location would be fastidious35

and weakly informative. In addition, ignoring spatio-temporal correlations is36

likely to deteriorate the uncertainty estimates, a fact that geostatisticians or37

practitioners of data assimilation are familiar to. Hence, step 2 of the procedure38

above can be seen as a problem of dimension reduction. The objective of this39

step is to derive new model outputs of sufficiently low dimension to allow for40

computation and interpretation while preserving most of the information carried41

by a spatio-temporal analysis.42
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Step 3 is particularly challenging when complex inputs, such as meteor-1

ological fields, are involved. High dimensional inputs are indeed difficult to2

handle, especially when they display spatial correlation, temporal correlation3

or singularities that are structurally characteristic of the physical phenomenon4

at hand. Precipitation fields for instance are made of patches of varying shape5

that appear, deform and move over time, which cannot be modelled by a simple6

probability distribution. The emitted amount of a given species seen as a time7

series displays strong auto-correlation but also very temporally localised peaks.8

Additionally, several fields are constrained by physical relations, such as wind9

fields that need to satisfy the continuity equation. The choice of input variables10

and their uncertainty description are set out in section 4.11

Given these difficulties, the observations mentioned in step 5 are an invaluable12

assessment tool. They may intervene for instance to ensure that no major source13

of uncertainty was left aside or to appreciate the quality of the input uncertainty14

descriptions.15

The details of step 4 will be relevant when the actual problem of uncertainty16

analysis will be tackled. For now, the present paper deals with sensitivity analysis,17

an approach differing in its objectives, but related to uncertainty quantification18

(Saltelli et al., 2008). The rationale for this preliminary step is that undertaking19

the issues evoked above all at a time seemed too complicated. The generic motive20

of sensitivity analysis is to quantify the relative influence of a set of inputs on the21

output of a model. The method employed here and detailed in section 3 belongs22

to the screening methods category which aims at classifying input variables into23

influential and negligible with a view of reducing the computational burden for24

further studies by setting aside those of smaller influence. While the focus is25

clearly on step 1 of the procedure given above, this work constitute a starting26

point in the reflection upon the subsequent problem of uncertainty quantification,27

especially steps 2 and 3 but also step 5, as will be seen in section 5.4. The results28

of the sensitivity analysis are presented in section 5.29

2. Polyphemus/Polair3D30

The atmospheric dispersion of the radionuclides is carried out with the air31

quality modeling system Polyphemus (Mallet et al., 2007) and its Eulerian32

transport model Polair3D. Polair3D is essentially a numerical solver for a system33

of 3D advection-diffusion equations. The equation of this system for a given34

radionuclide denoted by a subscript r reads35

∂cr
∂t

+ div(wcr) = div
(
ρK∇cr

ρ

)
− Fc + Er − Λcr, (1)

where cr is the concentration in the air, c the vector of the concentrations36

of all considered radionuclides linked a matrix F of decay coefficients, w =37

(wu, wv, wz)T the wind velocity, ρ the air density, K the turbulent diffusion38

matrix assumed to be a diagonal matrix with diagonal (Ku,Kv,Kz), Er is the39

emission source term and Λ the scavenging coefficient. On the ground, the40

4



boundary condition reads ρK∇ cr

ρ · n = vdcr, where n is the normal to ground1

oriented towards higher altitudes and vd is the deposition velocity.2

The equation is solved using first-order operator splitting, with diffusion3

integrated after advection. The advection scheme is a third-order direct-space-4

time scheme with flux limiting (Verwer et al., 2002). The spatial resolution is5

0.125° and the numerical time step is 10 min. The simulations are carried out6

with 10 vertical layers, whose center altitudes are 20 m, 100 m, 220 m, 340 m,7

500 m, 700 m, 1000 m, 1500 m, 2200 m and 3000 m.8

3. Morris method for sensitivity analysis9

Sensitivity analysis is the study of how variations in the inputs of a model10

affect its outputs. Here, the word model refers to any deterministic process that11

can be associated to a mathematical application mapping a set of input variables12

to one output value. The case of multivariate outputs is usually handled one13

variable at a time.14

Local sensitivity analysis is concerned with the response of the model in the15

vicinity of a reference point. In this respect, it pertains to Taylor expansion and16

derivatives approximation. Should the model response be resolutely non-linear,17

extrapolation of the local sensitivity measures to regions far from the reference18

point are likely to be seriously flawed (Saltelli and Annoni, 2010). By contrast,19

global sensitivity analysis aims at estimating the relative importance of the inputs20

over their whole domain of variation.21

Another desirable feature of a sensitivity analysis method is its ability to22

estimate interactions. Interactions are effects that appear when two or more23

inputs vary simultaneously. For instance, variations in the wind direction or24

delays in emissions can induce the plume to avoid a rain event at some location,25

which may remove any sensitivity to the rain intensity at the given location.26

The rain intensity is therefore in interaction with the wind and the emissions.27

Our purpose here is to sieve the inputs and eliminate the least influential from28

further studies. In this context, estimating interactions is a required safeguard29

against type II error, namely classifying a variable as non-influential when it30

actually has a non negligible impact on the output (Saltelli et al., 2008, p. 1531

and 110).32

The method of Morris (1991) allows for global sensitivities and interactions33

estimations while requiring relatively few model evaluations to be robust.34

3.1. From elementary effects to global sensitivities35

Thereafter, the model response to given inputs, represented by the vector36

x of size m, will be denoted y(x). Let x = (xi)i be a m-dimensional vector37

representing a reference set of inputs and x¬i the vector constituted of all x38

components but xi. Morris (1991) names elementary effect caused by the i-th39

input the following ratio obtained by perturbing only the i-th component of x40

with a quantity δ:41

d(i) = y(x¬i, xi + δ)− y(x¬i, xi)
δ

. (2)
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The first step in computing sensitivities is to build a design of experiment.1

An input space is first defined by choosing the input variables and the values2

they are allowed to take. Then, a set of points in the input space where the3

model will be evaluated are selected. The commonly used one-at-a-time design of4

experiment consists in choosing a reference point and computing one elementary5

effect per input variable. This is a local sensitivity analysis method which6

ignores interactions. In order to overcome these shortcomings, Morris (1991)7

suggested to randomise the reference point and to examine the distribution of8

elementary effects by sampling it. He proposed to use the first two moments9

of the distribution as sensitivity measures, which allows to classify the input10

variables into three groups: 1. those of negligible influence are characterised by11

a low mean of elementary effects; 2. those of strong linear influence without12

interaction have important mean and low standard deviation; and 3. those of13

strong influence, either non-linear or strongly interacting, have high mean and14

high standard deviation. Hereafter, the empirical mean and standard deviation15

of the elementary effects caused by the i-th variable will be denoted µi and σi16

respectively.17

The mean of elementary effects as a measure of sensitivity can be deceiving18

when the response is not monotone. Campolongo et al. (2007) have devised19

an alternative measure, the average of the absolute value of elementary effects20

denoted µ?i , that addresses this issue:21

µ?i = 1
n

n∑
k=1
|d(i)
k |, (3)

where the summation is carried over the sample of elementary effects. Input22

variables of substantial influence necessarily have strong µ? while their µ can be23

low due to elementary effects of opposing signs cancelling out. When both µ?24

and µ are high, the sign of µ indicates the direction of the effect.25

3.2. Algorithm26

The input variables can be assumed here to be all uniformly distributed on27

[0, 1] without loss of generality. Indeed, transformations for scaling each input28

to its proper range of variation and unit can be included in the model. Similarly,29

the inverse transform method can be used to sample another distribution using30

the uniform samples. It is almost always preferable to compute elementary31

effects with the unscaled uniformly distributed denominator in equation (2),32

because it allows to compare elementary effects of variables with very different33

ranges of variation.34

While elementary effects associated to the same variables need to be in-35

dependent, elementary effects of different variables can be correlated without36

compromising the sensitivity measures. Taking advantage of this, more sparing37

designs have been proposed by Morris (1991) and further improved by Campo-38

longo et al. (2007). The sampling method used in this paper requires a total39

(m+ 1)× r model evaluations to achieve a sample size of r elementary effects per40
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input instead of the 2m×r required when simply stringing together one-at-a-time1

design. This is described in further details in AppendixA.2

Each input can take k different values, called levels in the following. The3

first level corresponds to the lower bound of the variation interval of the input.4

The last level coincides with the upper bound of this interval. In between, the5

levels are regularly distributed in the interval. The number of levels should be6

selected consistently with the computational budget and the expected degree of7

irregularity of the model. It is no use increasing the number of levels without8

concurrently increasing the sample size because this would result in a poor9

coverage of the input space. A restricted number of levels is usually sufficient10

when the response surface is monotone, smooth and not highly non-linear. In11

order to ensure convergence of the sensitivity measures, the number of levels12

was set to m = 8 and the sample size to r = 100 per input variable. The13

results presented in section 5 were obtained with this safe but somewhat costly14

design of experiment. Simulations with the more common choice (m, r) = (4, 10)15

(Saltelli et al., 2008, p. 119) were conducted too. Section 5.5 provides a brief16

comparison of the results obtained with the two designs of experiment. Finally,17

the trustworthiness of the estimators was monitored with bootstrap confidence18

intervals.19

4. Design of experiment20

The coefficients of the transport equations of the form (1) are obtained21

either directly from input data or from physical parametrisations available in22

Polyphemus. Meteorological input data are provided by the European Centre for23

Medium-Range Weather Forecasts (ECMWF). The fields are from the 12-hour24

forecast cycles starting from analysed fields at 00:00 UTC. They have a resolution25

of 0.36° horizontally, 60 sigma-levels vertically and a timestep of 3 h. Sections 4.126

to 4.5 describe 12 of the 19 inputs of the sensitivity analysis that represent27

uncertainty in the parametrisation coefficients and meteorological input data28

of Polyphemus/Polair3D. The remaining 7 input variables relate to the source29

term and are dealt with in section 4.630

All input variables were assigned a uniform distribution. At this stage, the31

aim is not to accurately model the actual uncertainty of the inputs, but rather32

to cover evenly the input space, in order to get a global understanding of the33

model sensitivity. The inputs ranges of variations are summarised in table 1.34

4.1. Wet scavenging35

The parametrisation of the scavenging coefficient is of the form Λr = apb,36

where p is the rain intensity in mm h−1. Different coefficients describe the37

scavenging below and inside the clouds. The choice of simple exponential38

models with only two parameters to represent both below-cloud and in-cloud39

scavenging is driven by the poor knowledge of micro-physical parameters, such40

as the particulate size distribution, that are required by more detailed models.41

These uncertainties are reflected in the wide intervals presented in table 1 which42
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encompass the values found in the literature for comparable settings (Sportisse,1

2007). All species were attributed the same a and b coefficients. We also2

applied the same perturbation on those coefficients for all species in order to3

limit the number of input variables. The sensitivity to wet scavenging with4

this clustering is assumed be greater than the aggregation of sensitivities with5

individual perturbations. This is a safeguard against the risk of screening out6

an important input.7

4.1.1. Cloud layer8

The cloud layer base height affects below-cloud scavenging, and the cloud9

layer thickness affects in-cloud scavenging. Both were perturbed by random10

multiplicative factors, which induce an increase in variability with altitude and11

thickness. Indeed, the upper part of the atmosphere was deemed less well12

characterised, a fact already reflected by the increase of the vertical layers13

thickness with the altitude. Since not many references to these uncertainties14

were found in the literature, these inputs were conservatively attributed wide15

ranges of variation.16

4.1.2. Precipitation17

Hanna et al. (2001) elicited from a panel of experts some estimates of18

uncertainty ranges for several meteorological input parameters in the context19

of photochemical modelling. They suggest to model rain intensity with a log-20

normal distribution. The idea of a multiplicative perturbation was retained21

in the present study but a uniform distribution was preferred to a log-normal22

to ensure a sufficient sampling of the extreme levels. Indeed, using another23

distribution, especially one with a strong mode, could result in degenerate cases24

in practice due to the limited sample size.25

The bounds of the support of the uniformly distributed perturbation factor26

were set in agreement with the recommendations from Hanna et al. (2001) but27

rounded off to one significant digit.28

4.2. Dry deposition29

The range of variation of dry deposition velocity is derived from a literature30

review (Maryon et al., 1991; Thykier-Nielsen et al., 1999; Baklanov and Sørensen,31

2001; Brandt et al., 2002). All species were assumed to have the same dry32

deposition velocity. As for wet scavenging, a single perturbation for all species33

was used.34

4.3. Horizontal diffusion35

The horizontal diffusion coefficients, Ku and Kv (first and second diagonal36

elements of K), are constant and homogeneous. Not many references on the37

determination of horizontal diffusion coefficients were found in the literature.38

The range displayed in table 1 encompasses typical values found in the literature39

(Brandt et al., 1998; Ryall and Maryon, 1998; Sørensen, 1998; Yamartino, 2000)40
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Figure 1: Vertical profile of the half amplitude of wind components perturbation. The grey
lines indicates the boundaries of the vertical layers of the model.

4.4. Vertical diffusion1

The vertical diffusion coefficient, Kz, is computed by Louis (1979) paramet-2

risation above the boundary layer and inside the stable boundary layer. It is3

computed with the Troen and Mahrt (1986) parametrisation inside the unstable4

boundary layer. Hanna et al. (2001) suggest an uncertainty factor of 3 with5

a log-normal hypothesis to encompass 95 % of the possible values. This leads,6

after rounding off to one significant digit, to the bounds in table 1.7

4.5. Wind8

The horizontal wind is directly derived from the data, but the vertical wind is9

computed so that it satisfies div(ρw) = 0. Wind perturbations have to meet this10

requirement too. Hanna et al. (2001) dealt with this constraint by perturbing the11

speed of the wind field by a factor and its direction by an angular increment, both12

homogeneously throughout the spatial domain. They suggest to model the wind13

speed by a log-normal distribution with an uncertainty range of plus or minus14

a factor of 1.5 and the direction by a normal distribution with an uncertainty15

range of plus or minus 40°, both encompassing 95 % of the possible values. In16

the present study, the zonal and meridional components of the wind were instead17

additively perturbed by random increments uniformly distributed on symmetric18

intervals of equal length. In order to account for the mean wind speed while using19

additive perturbations, different interval lengths were attributed to each vertical20

level. The vertical profile of the upper bound of the perturbation intervals is21

displayed in figure 1. Details about the methodology used to determine these22

values in relation with the recommendations from Hanna et al. (2001) are given23

in AppendixB.24

4.6. Source term25

The source term devised by Mathieu et al. (2012) was used here. It contains26

emission rates for 73 species that were grouped into four families. The caesium27

family includes 134Cs, 136Cs, 137Cs, 138Cs as well as 137Ba because it is in secular28
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Figure 2: Emission rates of the four families of emitted species as functions of time. The
numbered brackets at the top delimit the emission events identified by Mathieu et al. (2012).

equilibrium with 137Cs. The iodine family includes 131I, 132I, 133I, 134I and 135I,1

both in molecular and aerosol forms, as well as 132Te because it is in secular2

equilibrium with 132I. The noble gases family includes 85Kr, 87Kr, 88Kr, 133Xe,3
135Xe and 138Xe. The last family includes all other remaining species that are4

supposed to have been emitted during the Fukushima disaster.5

The emission rates of the four families are displayed in figure 2. The emission6

events were derived from plant measurements (water level and pressure in the7

reactor vessel, pressure in the containment) and the chronology provided by8

the Tokyo Electric Power Company (TEPCO) for events such as containment9

venting or onset of smoke. This timeline was further modified to comply with the10

most significant gamma dose rate peaks measured by on-site monitoring devices.11

A detailed breakdown of these events was proposed by Korsakissok et al. (2013).12

They are indicated in figure 2 by the numbered brackets at the top of the plots.13

The source term is perturbed by an additive time shift, a shift of the model14

layer in which the radionuclides are released, and multiplicative factor on the15

emission rate of each of the four families. The time and vertical shifts are the16

same for all species. Since Polair3D is an Eulerian model, only the emission17

layer matters, not the exact emission altitude. Each of the four levels in our18

application of Morris method corresponds to a different vertical layer. The range19

of variation of the four emission factors, time shift, and emission altitude were20

set to high values so as to reflect the inherent inaccuracy of available data, as21

emphasised by Mathieu et al. (2012).22

5. Results23

The method described in section 3 applies to scalar output models. However,24

Polyphemus/Polair3D outputs are spatio-temporal fields of gamma dose rates25

whose dimensions are very high. Handling values at each location and each26

10



Variable Lower bound Upper bound Symbol

Scavenging factors/h s−1 m−1 0.05 0.5 ab (below-cloud), ai (in-cloud)
Scavenging exponent 0.6 1 bb (below-cloud), bi (in-cloud)
Precipitation(×) 0.5 2 p

Clouds base height(×) 0.667 2 Ch
Clouds thickness(×) 0.5 2 Ct
Dry deposition velocity/mm s−1 0.5 5 vd
Horizontal diffusion/104 m2 s−1 0 1.5 Ku (zonal), Kv (meridional)
Vertical diffusion(×) 0.333 3 Kz

Winds(+)/m s−1 see figure 1 wu (zonal), wv (meridional)
Emission factors (×) 0.333 3 ECs (caesium), EI (iodine),

Eg (noble gases), Eo (others)
Emission delay(+)/h −6 6 ∆t
Source elevation 1st layer 4th layer z

Table 1: Input variables, the bounds of their range of variation and the symbols that represent
them later. Generally the levels indicate the actual values taken by the inputs. A variable
whose name bears a (×) superscript is multiplied by a perturbation inside the prescribed
bounds. A variable whose name bears a (+) superscript is perturbed by adding a value inside
the prescribed bounds. In the application of Morris method, the lowermost and uppermost
levels correspond to the bounds displayed in this table. The intermediate levels are regularly
distributed across the interval.

time step as independent outputs would yield too many sensitivity indices for1

convenient interpretation. Additionally, consecutive values at a given point2

are highly correlated and the output fields exhibit strong spatial correlation3

structures. It is thus necessary to derive new outputs of lower dimension, each4

one focusing on a feature of the initial data. The chosen model outputs are5

ambient dose rates in the atmosphere, restrained to the first vertical layer of the6

simulation domain, which is of interest for population exposure. Dose rates due7

to radionuclides deposed on the ground (hereafter called deposit dose rate) are8

also retained, being the main source of exposure to radiations after the end of the9

release. For each output, the most relevant sensitivity measures are displayed:10

the averaged of the elementary effects µ or its equivalent with absolute values µ?,11

depending on whether the signed µ could be used without loss of information.12

The standard deviation of elementary effects σ is also displayed to identify the13

non-linearity or interactions.14

5.1. Aggregated outputs15

This section focuses on scalar outputs, aggregated both in time and space.16

They provide a synthetic view of the model sensitivity to variables, but they17

conceal any kinetic or geographic effect. For atmospheric dose rates, the spatial18

average of the temporal sums, noted 〈ȳa〉, are used. The brackets refer to the19

spatial averaging, and the horizontal bar refers to time-integration. For deposit20

dose rate, already accumulated over time, the maximum value of the spatial21

average was selected and denoted max〈yg〉.22

11



−5 −4 −3 −2 −1 0 1 2 3
0

2

4

µ

σ

Kz

z

∆tab
p

EI

ECs

Eg

vd
wu

wv

Kv

Figure 3: µ and σ measures for the spatial average of the time-integrated atmospheric dose
rate, 〈ȳa〉, in µGy h−1. Error bars represent 0.95 bootstrap confidence intervals.

Figures 3 and 4 represent the µ and σ measures for these two outputs1

respectively. The relatively small 0.95 confidence intervals represented by the2

error bars show a good convergence of the estimations. In figure 3, the source3

altitude z, followed by the vertical diffusion coefficient Kz and the emission4

factors for iodine EI and noble gases Eg, are the most influential variables since5

they have high µ in absolute value. The high value of σ, relatively to µ, indicates6

strong interactions or non-linearity. Increasing the source altitude or the vertical7

diffusion coefficient tends to deplete the lower layer of the atmosphere, which8

decreases 〈ȳa〉, resulting in a negative µ. Obviously, emission factors have9

positive µ since they increase the dose rates.10

Figure 4 shows a clear predominance of the emission factor for iodine on11

ground dose rate sensitivity. The µ for noble gases is null since they are not12

deposited. The source altitude and the vertical diffusion coefficient are of13

lesser importance for the deposit than the atmosphere, since radionuclides are14

scavenged by rain in all layers of the atmosphere. Rain intensity and scavenging15

factors have positive effects of similar magnitude, either non-linear or displaying16

interactions. Scavenging exponents have slight negative effects because the17

rainfalls that occurs near the source were of intensity below 1 mm h−1.18

On both figures, iodine is predominant over caesium since it was emitted19

in higher quantities and has a higher dose coefficient. An overview of the least20

influential inputs for each considered output is provided in table 2.21

5.2. Time-dependent outputs22

Figures 5 and 6 represent the µ computed at each time step for spatially23

averaged dose rates from the atmosphere, 〈ya〉, and deposit, 〈yg〉, respectively.24

As expected, figure 5 presents positive peaks for emission factors at times25

corresponding to the release periods of figure 2. The most influential variables26

are the same as in figure 3, with the same signs for µ. The time shift effect is27

negative before the peaks and positive after, since a delay in the release results28

in a forward time shift of the concentration peak. On figure 6, all µ values are29

very low until a substantial rain event occurred while the plume was widespread,30

12
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Figure 5: µ measures for the spatial average of atmospheric dose rate, 〈ya〉, in µGy h−1. The
numbered brackets on top correspond to the emission events from figure 2.

on March 15th. It is responsible for most of wet deposition, corresponding to1

the release event 5 (see figure 2) being scavenged within a few hours, as shown2

in Korsakissok et al. (2013). This explains the sharp negative peak for the3

time shift: delaying this emission makes the plume meet the rain event later.4

After this event, the influence of the emission factor for iodine and caesium5

both rise steadily before the former begins to drop due to radioactive decay.6

Having a much longer half-life, the latter remains almost constant until the end7

of the simulation. The variables found to have a minor influence for both the8

atmosphere and deposit are reported in table 2, and showed in gray in figures 59

and 6.10

5.3. Spatial outputs11

Maps of sensitivity measures computed at each grid cell for time-aggregated12

outputs are given as supplementary material. Although some qualitative in-13

formation could be derived from these maps, they cannot be easily interpreted14

13
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Figure 6: µ measures for the spatial average of the dose rate from the deposit, 〈yg〉, in µGy h−1.
The numbered brackets on top correspond to the emission events from figure 2.

quantitatively. Moreover, they carry redundant information because dose rates1

simulated at neighbouring locations are highly correlated. Thus, a criterion for2

input classification based on this kind of outputs would be difficult to construct3

and rather arbitrary. Principal component analysis proved to have some potential4

for efficient dimension reduction but the interpretation of the principal directions5

is not straightforward. This is further complicated by the very strong gradients6

that require a transformation or normalization of the data beforehand. For these7

reasons, a simpler approach was adopted. Indicator functions exploiting certain8

thresholds were considered in order to reduce the dimension without cancelling9

the information on spatial structures. Geometrical features such as the area of a10

region above a given threshold or the length of its contour may be considered.11

However, while these may be good indicators of the plume’s spread, they fail12

to convey some valuable information about the shape or position of the region13

where the threshold is exceeded. In order to account for these, the following14

measure of dissimilarity, later referred to as shape mismatch, may be substituted15

to the notion of elementary effect given in equation (2):16

sm(y) = 1− A
[
{y(x) > θ} ∩ {y(x¬i, xi + δ) > θ}

]
A
[
{y(x) > θ} ∪ {y(x¬i, xi + δ) > θ}

] , (4)

where θ denotes the chosen threshold and A[·] the area. The quantity defined in17

equation (4) is equal to 1 when the surface where the threshold is exceeded is18

unchanged by the input perturbation and equal to 0 if the changes are so big19

that there is no overlap between the reference and perturbed surfaces. As this20

measure of dissimilarity is always positive, the µ and µ? measures are equivalent.21

Figures 7 and 8 display µ? and σ measures for two thresholds for the at-22

mospheric and deposit dose rates respectively. They were computed on time-23

aggregated outputs: the dose rates were time-integrated for the lower atmosphere,24

while the time maximum was used for the deposit, like in section 5.1. The25

thresholds were selected so that the proportion of the spatial domain where they26

are exceeded covers most possible values excluding very high and very low ones.27

14
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Figure 7: µ? and σ measures based on shape mismatch of the exceedance zone of the time-
integrated atmospheric dose rates, ez(ȳa), for two thresholds, 1 µGy h−1 and 0.1 µGy h−1.

The average share of the simulation domain covered by the exceedance zone1

is indicated in the upper left corner of the figures. The winds and time shift2

are predominant for both output variables and thresholds. Emission factors are3

more important for the highest threshold while horizontal diffusion becomes4

noticeable for the lowest.5

5.4. Involving observations6

Observations may be used in uncertainty analysis to calibrate the input7

probability distributions and assess the output uncertainty estimates. This paper8

focuses on a screening method whose aim is to classify the variables influence9

rather than precisely estimating their uncertainty. Still, the available samples of10

model evaluations can be exploited to get some insights on how to use observations11

later in the uncertainty analysis. Indeed, influential inputs where and when12

observational data are available are those whose uncertainty description can later13

be calibrated. Hence, particular attention should be devoted to variables that14

are preponderant for “classical” outputs but of subsidiary importance regarding15

model performance, and therefore, not subject to calibration. Possible responses16

to such a situation include using additional observations, altering the uncertainty17

descriptions, or, at least, attributing a wider range of variation to the problematic18

inputs so as to ensure conservative uncertainty estimates.19
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have been collected. Stations are figured by blue squares and the power plant by a yellow dot.

Sensitivity analysis focuses on the uncertainty of input variables or model1

parameters, as detailed in this paper. While these uncertainties play a key2

role in model-observations discrepancies, other sources of error were left aside:3

inadequacy of the model’s physical equations, representativeness errors, measure-4

ment errors. . . The importance of inputs variability relatively to all these other5

sources of discrepancy can be appreciated by applying the sensitivity analysis6

methodology to outputs derived from the model assessment framework. If the7

considered inputs have no influence over model performance indicators, this may8

mean one of the following: the inputs ranges of variation are too small, the way9

they are perturbed is inadequate, some fixed input should be made random, or10

the model’s predictive power is so low that uncertainty in the inputs is only11

marginally affecting its poor performance.12

We used a total of 64 time series of ambient instantaneous dose rate measured13

with a period of 60 minutes or less, covering the release period with some gaps.14

Figure 9 shows that the spatial coverage over Japan is uneven but the spread15

of the measurement network is appreciable. These measurements have been16

analysed by Saunier et al. (2013), along with a model-to-data comparison to17

observations for ldX, IRSN’s operational version of Polyphemus/Polair3D. Part18

of this data can now be accessed on the web database set up by the International19

Atomic Energy Agency (IAEA) (2012).20

Two performance indicators were selected and computed for every simulation:21

• the factor 2 score is the proportion of simulated values within a factor of 222

from the corresponding observations;23

• the figure of merit in time is the average of the ratio of the minimum and24

maximum between the observations and simulations at each time step;25

The factor 2 and figure of merit in time range respectively from 0.32 to 0.68 and26

from 0.34 to 0.62 and have a median of 0.53 and 0.51. These numbers indicate27

that the model is able to reproduce the observations reasonably well over the28

input ranges of variation. The performance of the model in a deterministic case29

17
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Figure 10: µ? and µ measures for the factor 2 score (fac2(y)) and figure of merit in time
(fmt(y)) for ambient dose rate (from top to bottom). Error bars represent 0.95 bootstrap
confidence intervals. The solid grey lines correspond to |µ| = µ?. The dashed grey lines
correspond to |µ| = 0.5µ?.

was illustrated by Saunier et al. (2013). The extended ranges of variation of1

the statistical scores mean that input uncertainty has a strong impact on the2

output. They also confirm that dose rate measurements could be adequate for3

the calibration of the inputs uncertainty ranges.4

The µ? and µ measures for these 2 scores are displayed in figure 10. In all 35

cases, the σ measures, not displayed here, vary linearly with the associated µ?6

and are only slightly lower which denotes strong non-linearity or interactions.7

A few variables have µ much smaller than their µ?. This is particularly true8

for the time shift whose influence is highly dependent on the location and time9

considered.10

The sensitivity of the factor 2 score and figure of merit in time are almost11

the same. They are all dominated by the winds, the emission factors for the12

iodine and caesium families, the time shift. The emission factor for the noble13

gases family has almost no effect on these outputs. This can be related to the14

fact that these indicators are averages over the set of observations. Indeed,15

while a passage of the plume over a measurement station induces very high dose16

rates, these events rarely last longer than a few hours whereas the impact of17

deposited radionuclides lasts much longer. Thus, averaged indicators are mostly18

18
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representative of the match of deposit dose rate and much less of atmospheric1

dose rate.2

Another indicator based on the temporal match of simulated and observed3

peaks was designed to complement the previous scores. Peaks in both the4

simulated and observed signals were detected by recording change in the sign of5

their first derivative from positive to negative. Then, scores were computed from6

the observed and simulated peak timings with a procedure detailed in AppendixC.7

Each pair of matched peaks contribute a score which decreases exponentially8

with the time interval separating them: two peaks contribute a score of 1 when9

they are synchronised, a score of 0.5 when distant from 6 h and a score of 0 when10

distant from more than 18 h. The score of a given simulation was obtained by11

averaging the individual scores of matched peaks over all measurement stations.12

The µ? and µ sensitivity measures derived from this score are displayed in13

figure 11. The low µ values indicate compensation effects which were expected,14

given that the scores associated to emission events temporally distant and15

measurement stations spatially distant were aggregated together. The most16

interesting feature here is that, contrary to classical statistical scores, this output17

is significantly affected by the emission factor for noble gases. This suggests18

that a calibration method for uncertainty quantification might need to rely on19

several indicators at once. Using other kinds of observations, such as deposition20

measurements or volume activities, may also provide invaluable information.21

5.5. A remark on sampling22

The results detailed in section 5 were obtained with a sample unusually large23

for the Morris method: 8 levels and 100 trajectories, picked in a pool of 10 00024

with the procedure described in AppendixA. The decision to augment the sample25

size was motivated mostly by the wide bootstrap confidence intervals associated26

to the sensitivity estimates obtained with the more common configuration of 427

levels and 10 trajectories, picked in a pool of 100.28

19



The measures of sensitivity computed with the large sample are a little1

more spread out than those obtained with the small sample, and the associated2

confidence intervals are much smaller. While this gain in precision allows for a3

more accurate ranking of the input variables, there is no major different between4

the two rankings. The differences are more pronounced when observations are5

involved. There are small changes in the rankings for both the classical scores6

and the peak time match score. Yet, the swaps in positions are within what one7

would expect when looking at the bootstrap confidence intervals which are very8

wide for the small sample.9

6. Synthesis10

A set of 19 input variables were selected to represent potential sources11

of uncertainty to propagate in Polyphemus/Polair3D, which carried out the12

atmospheric dispersion of radionuclides after the Fukushima disaster. These13

variables were attributed probability distributions loosely representing their14

inherent uncertainty. More precise uncertainty descriptions are not achievable15

at this early stage of the uncertainty analysis and simple ones are sufficient for a16

preliminary screening sensitivity analysis. The ranges of variation of the inputs17

were fixed after a thorough review of the literature dealing with each aspect of18

the model.19

The sensitivities were computed for different aggregated atmospheric and20

ground dose rates: spatio-temporal aggregated values, time series and spatial21

fields. Table 2 provides a classification of the inputs based on their µ?. Each22

column corresponds to an output considered in a preceding section and, for each23

output, the maximal µ? over all inputs is taken as a reference. The “−−”, “−”,24

“=”, “+”, and “++” denote inputs whose µ? values are respectively lower than25

1 %, 5 %, 10 %, 50 % or above 50 % of the reference.26

The most influential inputs are the winds, the emission factors for the caesium27

and iodine families, the time shift and, to a lesser extent, the source altitude.28

The cloud thickness and emission factor for other species weakly impact all the29

considered inputs so they could be safely discarded from further studies.30

Noble gases are not deposited so their emission coefficient has no influence31

on deposition-related outputs but it is important for atmosphere-related outputs.32

The reverse can be noted for precipitation intensity which does not affect the33

outputs derived from atmospheric dose rates.34

About the relative weakness of horizontal diffusion coefficients, it must be35

noted that the spatial resolution used here is 0.125°. They could have a more36

noticeable influence, should a finer spatial resolution be used.37

Future work should focus on refining the uncertainty descriptions of the most38

influential variables, namely the wind, the precipitation fields and the source39

term. The emission factor for noble gases has no effect on traditional statistical40

scores because it only affects atmospheric dose rates which are short-lived. This41

highlights the necessity to use more temporally localised performance estimates,42

such as the score for peak time matching proposed here. More generally, refining43
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〈ȳa〉 ȳa ez(ȳa) max〈yg〉 ȳg ez(max yg) fac2(y) fmt(y) ptm(y)
In section 5.1 5.2 5.3 5.1 5.2 5.3 5.4 5.4 5.4

ab = = + + + + + + +
bb −− − − − − = + = +
ai −− −− − + + + + + +
bi −− −− − − − − = = =
p − − = + + + + + +
Ch −− −− − − − = = = +
Ct −− −− −− − − − −− −− −−
vd = − = = = + + = +
Kz + + + = = + + + +
Ku −− −− − −− −− = = = +
Kv − − + −− − + + + +
wu = + ++ + + ++ ++ ++ ++
wv − = ++ = + ++ ++ ++ ++
ECs = − = + + + + + +
EI ++ + + ++ ++ + ++ ++ +
Eg ++ + + −− −− −− −− −− +
Eo − −− − − − − − − −
∆t = ++ ++ + ++ ++ + + ++
z ++ ++ + = + = + = +

Table 2: Synoptic view of the sensitivities of all considered outputs. For each output, the
inputs are classified by comparing their µ? to the maximal µ?. The “−−”, “−”, “=”, “++”,
and “++” denote inputs whose µ? values are respectively lower than 1 %, 5 %, 10 %, 50 % or
above 50 % of the maximal µ? for each output. The symbols ez, fac2, fmt, and ptm denote
respectively the exceedance zone, factor 2 score, figure of merit in time and peak time match
score. Multidimensional µ? were converted to scalars by taking a maximum: over time for ȳa
and ȳg , and over the set of thresholds for ez(ȳa) and ez(max(yg)).

21



the input perturbations, for instance by taking into account the spatial structure1

of the meteorological fields or dividing the simulation time period into intervals,2

will necessitate calibration, and more precise and localised performance estimates.3

Baklanov, A., Sørensen, J. H., 2001. Parameterisation of radionuclide deposition4

in atmospheric long-range transport modelling. Physics and Chemistry of the5

Earth 26 (10), 787–799.6

Brandt, J., Bastrup-Birk, A., Christensen, J. H., Mikkelsen, T., Thykier-Nielsen,7

S., Zlatev, Z., 1998. Testing the importance of accurate meteorological input8

fields and parameterizations in atmospheric transport modelling using dream -9

validation against ETEX-1. Atmospheric Environment 32 (24), 4167–4186.10

Brandt, J., Christensen, J., Frohn, L., 2002. Modelling transport and deposition11

of caesium and iodine from the Chernobyl accident using the DREAM model.12

Atmospheric Chemistry and Physics 2 (5), 397–417.13

Campolongo, F., Cariboni, J., Saltelli, A., 2007. An effective screening design for14

sensitivity analysis of large models. Environmental Modelling and Software15

22 (10), 1509–1518.16

Hanna, S. R., Lu, Z., Frey, H. C., Wheeler, N., Vukovich, J., Arunachalam, S.,17

Fernau, M., Hansen, D. A., 2001. Uncertainties in predicted ozone concentra-18

tions due to input uncertainties for the UAM-V photochemical grid model19

applied to the july 1995 OTAG domain. Atmospheric Environment 35 (5),20

891–903.21

International Atomic Energy Agency (IAEA), 2012. Fukushima monitoring22

database. https://iec.iaea.org/fmd/search_by_dataset.aspx, accessed23

on November 27, 2013.24

Korsakissok, I., Mathieu, A., Didier, D., 2013. Atmospheric dispersion and25

ground deposition induced by the Fukushima nuclear power plant accident: a26

local-scale simulation and sensitivity study. Atmospheric Environment 70 (0),27

267–279.28

Louis, J.-F., 1979. A parametric model of vertical eddy fluxes in the atmosphere.29

Boundary-Layer Meteorology 17, 187–202.30

Mallet, V., Quélo, D., Sportisse, B., Ahmed de Biasi, M., Debry, É., Korsakissok,31

I., Wu, L., Roustan, Y., Sartelet, K., Tombette, M., Foudhil, H., 2007.32

Technical Note: The air quality modeling system Polyphemus. Atmospheric33

Chemistry and Physics 7 (20), 5,479–5,487.34

Maryon, R., Smith, F., Conway, B., Goddard, D., 1991. The U.K. nuclear35

accident model. Progress in Nuclear Energy 26 (2), 85–104.36

Mathieu, A., Korsakissok, I., Quélo, D., Groëll, J., Tombette, M., Didier,37

D., Quentric, E., Saunier, O., Benoit, J.-P., Isnard, O., 2012. Atmospheric38

dispersion and deposition of radionuclides from the Fukushima Daiichi nuclear39

power plant accident. Elements 8 (3), 195–200.40

22

https://iec.iaea.org/fmd/search_by_dataset.aspx


Morris, M. D., 1991. Factorial sampling plans for preliminary computational1

experiments. Technometrics, 161–174.2

Pujol, G., Iooss, B., Janon, A., 2013. sensitivity: Sensitivity Analysis. R package3

version 1.7.4

URL http://CRAN.R-project.org/package=sensitivity5

Ridders, C. J. F., 1979. A new algorithm for computing a single root of a real6

continuous function. Circuits and Systems, IEEE Transactions on circuits7

systems 26 (11), 979–980.8

Ryall, D., Maryon, R., 1998. Validation of the UK met. office’s name model9

against the ETEX dataset. Atmospheric Environment 32 (24), 4265–4276.10

Saltelli, A., Annoni, P., 2010. How to avoid a perfunctory sensitivity analysis.11

Environmental Modelling & Software 25 (12), 1508–1517.12

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,13

Saisana, M., Tarantola, S., 2008. Global sensitivity analysis: the primer. Wiley14

Online Library.15

Saunier, O., Mathieu, A., Didier, D., Tombette, M., Quélo, D., Winiarek, V.,16

Bocquet, M., 2013. An inverse modeling method to assess the source term of the17

Fukushima nuclear power plant accident using gamma dose rate observations.18

Atmospheric Chemistry and Physics Discussions 13 (6), 15567–15614.19

Savitzky, A., Golay, M. J., 1964. Smoothing and differentiation of data by20

simplified least squares procedures. Analytical chemistry 36 (8), 1627–1639.21

Sørensen, J. H., 1998. Sensitivity of the DERMA long-range gaussian disper-22

sion model to meteorological input and diffusion parameters. Atmospheric23

Environment 32 (24), 4195–4206.24

Sportisse, B., 2007. A review of parameterizations for modelling dry deposition25

and scavenging of radionuclides. Atmospheric Environment 41 (13), 2683–2698.26

Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S.,27

Tapia, C., Vargas, A., Yasunari, T. J., 2012. Xenon-133 and caesium-13728

releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant:29

determination of the source term, atmospheric dispersion, and deposition.30

Atmospheric Chemistry and Physics 12 (5), 2313–2343.31

URL http://www.atmos-chem-phys.net/12/2313/2012/32

Terada, H., Katata, G., Chino, M., Nagai, H., 2012. Atmospheric discharge33

and dispersion of radionuclides during the Fukushima Dai-ichi nuclear power34

plant accident. part II: verification of the source term and analysis of regional-35

scale atmospheric dispersion. Journal of Environmental Radioactivity 112 (0),36

141–154.37

23

http://CRAN.R-project.org/package=sensitivity
http://www.atmos-chem-phys.net/12/2313/2012/


Thykier-Nielsen, S., Deme, S., Mikkelsen, T., 1999. Description of the atmo-1

spheric dispersion module RIMPUFF. Tech. rep., Forschungszentrum Karls-2

ruhe GMBH.3

Troen, I., Mahrt, L., 1986. A simple model of the atmospheric boundary layer;4

sensitivity to surface evaporation. Boundary-Layer Meteorology 37, 129–148.5

Verwer, J. G., Hundsdorfer, W., Blom, J. G., 2002. Numerical time integration6

for air pollution models. Surveys on Mathematics for Industry 10, 107–174.7

Winiarek, V., Bocquet, M., Duhanyan, N., Roustan, Y., Saunier, O., Mathieu,8

A., jan 2014. Estimation of the caesium-137 source term from the Fukushima9

Daiichi nuclear power plant using a consistent joint assimilation of air con-10

centration and deposition observations. Atmospheric Environment 82 (0),11

268–279.12

Yamartino, R., 2000. Refinement of horizontal diffusion in photochemical grid13

models. In: 11th conference on the application of air pollution meteorology.14

AMS/AWMA, Long Beach, CA.15

AppendixA. Sampling method16

This section details the algorithm introduced in 3.2. In particular, it presents17

how to reuse model evaluations in order to compute more than one elementary18

effect. Morris (1991) proposed the following algorithm for generating samples of19

independent elementary effects sparingly. First, the model response is evaluated20

with a randomly selected vector of inputs. Then, each input is perturbed once21

in a random order and the model response is evaluated after each perturbation.22

This sequence draws a trajectory in the input space and every point of this23

trajectory is used to compute two elementary effects, except the first and last24

which are used only once. A number r of such trajectories is produced, which25

constitutes m samples of independent elementary effects corresponding to the m26

input variables. The computational cost of the Morris method is then (m+1)×r27

model evaluations for a sample size of r. This trajectory-based design has the28

advantage of a slightly better coverage of the input space than the radial design29

in which perturbations are applied in each input direction of r reference points.30

So as to avoid generating border effects, the number of perturbation levels,31

k, is chosen even and the perturbation, δ, fixed to twice the interval between32

two levels. Jumping only one step at a time would cause the extreme levels to33

be sampled less and choosing an odd integer for k would cause uneven sampling,34

no matter the value δ.35

Finally, Campolongo et al. (2007) proposed an improvement of the sampling36

scheme described above. A larger sample of trajectories, say of 100 times the37

sample size, is generated and a sub-sample of size n is then selected so as to38

maximise the distance between each trajectories. Here a maximin algorithm39

adapted from Pujol et al. (2013) was used to carry out this optimisation task.40

24



First, pairwise Hausdorff distances are computed in the large sample using the1

following definition:2

h (Xi,Xj) = max
[

max
xi∈Xi

min
xj∈Xj

‖xi − xj‖, max
xj∈Xj

min
xi∈Xi

‖xi − xj‖
]
, (A.1)

where Xi and Xj denote trajectories in the input space, that is sets of m + 13

vectors of size m. Then the two most distant trajectories are selected as the4

first two trajectories of the optimised sample. Finally, trajectories from the large5

sample are added sequentially to the optimised sample using the Kenard-Stone6

algorithm, until the desired size is reached: the selected trajectory is the one that7

maximises the minimum Hausdorff distance between itself and the trajectories8

of the optimised sample.9

AppendixB. Derivation of the perturbation bounds of wind compon-10

ents11

As stated in section 4.5, the two components of the wind field were perturbed12

independently and uniformly. As there is no reason to single out any direction,13

the intervals in which lie the perturbations were set symmetric and of equal14

length. Hence the wind perturbation range is controlled by a unique parameter,15

namely the length of the interval in which lies a wind component, denoted 2β.16

While it is not possible to establish an exact correspondence between this17

setting and the recommendations from Hanna et al. (2001), they can be used to18

estimate β. Hanna et al. (2001) suggest uncertainty ranges for the wind speed19

modelled by a log-normal distribution and for its direction modelled by a normal20

distribution. These confidence intervals are equivalent to the two following21

statements:22

P
(
νm ∈

[ ν
1.5 , 1.5ν

])
= 0.95, (B.1)

and23

P (θm ∈ [θ − 40°, θ + 40°]) = 0.95, (B.2)

where ν and θ refer respectively to the speed and the direction of the wind and24

the m subscript denote the median of these random variables.25

As the uniform perturbation scheme of the wind components has only one26

parameter, the conjunction of these two statements should be considered:27

P
(
νm ∈

[ ν
1.5 , 1.5ν

]
, θm ∈ [θ − 40°, θ + 40°]

)
= 0.952 = 0.9025. (B.3)

This necessary condition stemming from the recommendations of Hanna et al.28

(2001) is sufficient to determine a unique value for the undetermined parameter.29

A geometric interpretation of the equation to solve is given in figure B.12. The30

domain sampled when perturbing each component uniformly is a square of side31

25



1.5ν

ν
1.5

40°

Figure B.12: Geometric interpretation of the comparison with the uncertainty range suggested
by Hanna et al. (2001) for the wind field and the perturbation of its zonal and meridional
components. The black arrow represents a wind vector of given speed and direction. The two
circles delimit the domain [ ν1.5 , 1.5ν] that contains the median of the wind speed νm with a
probability of 0.95. The two grey rays on either side of the wind vector delimit the domain
[θ − 40°, θ + 40°] that contains the median of the wind direction θm with a probability 0.95.
The intersection of these two domains is highlighted in orange. The black square is the region
uniformly sampled by the perturbation of the zonal and meridional components of the wind.
The problem at hand amounts to finding β so that the area of the orange portion of annulus is
equal to 0.9025 of the area of the black square.

length 2β centred in (cos(θm) νm, sin(θm) νm). The domain in equation (B.3) is a1

portion of annulus delimited by two circles and two rays. The condition stated in2

equation (B.3) is met for β such that the area of the portion of annulus over the3

area of the square is equal to 0.9025. These areas can be computed analytically4

but the solution in β is intricate and needs to be estimated numerically. Giving5

up on the exact solution, the intersection’s area for a given β were estimated6

with a Monte Carlo procedure and the root finding method devised by Ridders7

(1979) was used to solve in β.8

One average value of the β parameter per vertical layer was determined9

by averaging in each layer the β values found for all the wind vectors in the10

meteorological data used for the simulations.11

AppendixC. Score based on peak time matching12

The algorithm used in section 5.4 to compute scores representing the temporal13

match of the observed and simulated dose rate peaks comprehends three steps.14

First, peaks are identified using a first order derivative estimate. Then, a simple15

filter is applied in order to keep only the peaks that emerge from the signal noise.16

Finally, sets of simulated and observed peak times are compared at each station,17

and the resulting scores are averaged over all stations.18

26



The peak detection step consists in locating the times when the first derivative1

of the signal changes sign from positive to negative. The first derivative is2

estimated using the smoothing filter proposed by Savitzky and Golay (1964)3

which relies on local least-square fit of polynomials. A window size of 5 points4

equivalent to 5 h and polynomials of order 2 were used for both the simulations5

and observations.6

Simulated peaks with an amplitude smaller either than 10 times the meas-7

urement resolution, namely the lowest possible interval between two consecutive8

points in the signal, or 0.05 times the overall amplitude of the signal were set9

aside. For observations, these cutoffs were set to 10 and 0.1.10

Given a pair of signals A and B, the score of A versus B is the proportion11

of peaks from A matching a peak from B. The quality of a match depends on12

the time interval separating the peaks and a temporal resolution parameter,13

tr, which was set to 6 h by visual inspection of the signals. The procedure to14

compute the said proportion is as follows:15

• First, an individual score is computed for each peak in A by recording the16

time interval δt separating it from the closest peak in B. It is equal to17

exp(− δt2

ln(2) tr ) if δt < 3tr, and 0 otherwise.18

• Then, peaks from A separated from each other by less than 3tr and19

matched with the same peak in B are grouped together. This aims to20

prevent short-timed series of matching peaks to override the influence21

of a missed peak elsewhere in the signal. Group scores are obtained by22

averaging the individual scores in each group.23

• Finally, the average of the group scores yields the score of A versus B.24

The score of A versus B is usually different from the score of B versus A so they25

are averaged to yield the score of the pair (A,B). The scores used in section 5.426

are the averages of the scores of all 82 simulation-observation pairs corresponding27

to the set of observation stations.28

27
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