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Abstract

Nuclear steam generators are subject to clogging of their internal parts
which causes safety issues. Diagnosis methodologies are needed to optimize
maintenance operations. Clogging alters the dynamic behaviour of steam
generators and particularly the response of the wide range level (WRL -
a pressure measurement) to power transients. A numerical model of this
phenomenon has previously been developed. Its input variables describe the
spatial distribution of clogging and its output is a discretization of the WRL
dynamic response.

The objective of the present study is to characterize the information about
the clogging state of a steam generator that can be inferred from the obser-
vation of its WRL response. A methodology based on several statistical
techniques is implemented to answer that question. Principal component
analysis reveals that clogging alters the WRL response mainly in two dis-
tinct ways. Accordingly, the output can be summarized into a vector of
dimension 2. A sensitivity analysis is carried out to rank the input variables
by magnitude of influence. It has shown that they can be divided into two
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groups corresponding to the two sides of the steam generator. Finally, sliced
inverse regression is used to reduce the input dimension from 16 to 2. A
sampling issue that arises when the input dimension is high is addressed.

The simplification of the original problem yields a diagnosis methodology
based on response surfaces techniques.

Keywords: sensitivity analysis, principal component analysis (PCA), sliced
inverse regression (SIR), bootstrap, steam generators, clogging.

1. Introduction1

Pressurized light water nuclear power plants mainly consist of two sep-2

arated water loops that exchange heat. The water from the primary loop3

goes first through the reactor where it is heated by the nuclear reaction and4

then through heat exchangers called steam generators (SGs) where it trans-5

fers heat to the water of the secondary loop. Steam exits the SGs by their6

upper opening and then flows through the turbines. A SG consists of a cylin-7

drical tank (approx. 20 m high and 3m wide) that contains the secondary8

steam-liquid mixture. The primary water enters the SG at its bottom and9

goes through a bundle of U shaped tubes. Eight circular plates called tube10

support plates (TSPs) maintain the tube bundle. The tubes fit in circular11

holes drilled in the TSPs. These holes are surrounded by additional qua-12

trefoil holes to let the secondary steam-liquid mixture flow through. A SG13

diagram can be found in figure 1.14

SGs internal elements foul with iron oxides carried by the secondary feed-15

water. This causes clogging of the quatrefoil holes that induces safety issues.16

Means to estimate TSP clogging are needed to optimize maintenance oper-17

ations. The pressure difference measured between the steam dome and the18

bottom of the SG is called the wide range level (WRL). Previous studies19

[1, 2] has shown that the shape of the WRL response curve to a power tran-20

sient is altered by the clogging state of the TSPs and derived a diagnosis21

method that utilizing this link. The principle of the method is to compare22

measured response curves with simulations using with a mono-dimensional23

SG model. To assess the method’s potential and make it reliable, it is nec-24

essary to characterise how much information about the clogging state can be25

inferred from the WRL response. This issue breaks down into three closely26

related questions:27

- how does TSP clogging affect the shape of the WRL response?28
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- Are these effects different in nature and magnitude depending on the29

location inside the SG?30

- What is the simplest formulation of input and output variables that31

captures these effects ?32

The methodology presented here to answer these questions relies on com-33

puter intensive statistical methods. As the CPU time for a transient simula-34

tion with the 1D SG model is around 5 min, large samples of response curves35

corresponding to different clogging configurations can be generated.36

Sensitivity analysis [3] and principal component analysis (PCA) [4] have37

been carried out to address the first two questions and the simplification of38

the output. The results suggested the use of a dimension reduction technique39

called sliced inverse regression (SIR) [5] to simplify the input. Along the40

process, bootstrap techniques were used to assess the robustness of the results1

and help with the interpretation. The SG numerical model and the statistical2

method that have been used are described in section 2. The results are3

presented and discussed in section 3.4

2. Model and methods5

2.1. Mono-dimensional steam generator model6

The SG type examined here is the Westinghouse 51. EDF currently7

operates 48 of these, most of them being about 30 years old. A diagram8

representing the principal elements of a SG is given in figure 1.9

The SG model has been developed with the Modelica language using10

Dymola software.11

Its main elements are:12

- primary fluid flow inside the U-tubes (single-phase flow);13

- secondary fluid flow outside the U-tubes (two-phase flow);14

- thermal transfer between the two fluids and through tube interfaces;15

- two-phase singular pressure drops e.g. at the TSP quatrefoil holes;16

- steam-liquid separation devices;17

- feed water flow rate control system.18
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Figure 1: Westinghouse type 51 steam generator.

All these elements are mono-dimensional but the exchanger part is mod-19

elled as two channels: one for the hot leg (i.e concurrent exchanging side,20

where the primary fluid enters the SG) and one for the cold leg (i.e coun-21

tercurrent exchanging side, where the primary fluid exits the SG). The ex-22

changing channels are composed of 20 evenly spaced meshes. The choice of23

mono-dimensionality and of the number of meshes is driven by the applica-24

tions for which the model has been developed. On the one hand, it must be25

able to simulate the dynamic response of a SG precisely enough so that infor-26

mation about clogging spatial distribution is not lost by averaging processes.27

On the other hand, computation time for simulation must not exceed five28

minutes so that it can be used in computer intensive methods. Additional29

details about the model can be found in [2].30

2.1.1. Model output definition31

A power transient is simulated by varying the model boundary conditions.32

The transient used in the clogging diagnosis method is a roughly linear power33
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decrease from nominal power to 40% of nominal power in an average time34

of 1148 s. It is modelled by a linear variation of primary inlet enthalpy35

and secondary outlet steam flow rate. The feed water flow rate is being36

determined by the control system. The model output is a vector, w, of37

dimension 1148. Its coordinates are the values of the WRL at each 1 s time38

step.39

2.1.2. Model input definition40

There are 8 TSPs in the SGs under study and two 1D channels so the
vector describing the clogging state, x, is of dimension 16. Each of its co-
ordinates is a clogging ratio associated to a half-TSP. Clogging ratios are
defined as the ratio of the blocked area to the total area of the holes without
clogging:

xi = (clogged area of half-TSP )i

(total holes area of half-TSP )i

. (1)

Clogging affects the WRL response by increasing the singular pressure drop41

at TSP crossings. In the model, the corresponding pressure drop coefficients42

depends on the clogging ratios through a function derived from experiments43

conducted on a 1:4 scale mock-up of TSPs and tubes [6].44

2.1.3. Preliminary analysis45

The singular pressure drop at a TSP crossing increases with the clogging46

ratio and steam fraction and decreases with the pressure of the steam-liquid47

mixture. The pressure is nearly the same in the two legs and it decreases as48

the secondary mixture rises inside the SG. The steam fraction equals zero49

at the bottom of the SG (liquid alone) and increases as the fluid rises and50

gets heated by the tubes. Its increase is sharper on the hot leg. From this,51

clogging is expected to have a greater impact in the hot leg than in the cold52

leg and in the higher parts of the SG than in the lower.53

2.2. Sensitivity analysis of a functional output model54

Sensitivity analysis studies how perturbations of the model input vari-55

ables generate perturbations on its output variables. Here, general infor-56

mation about how does TSP clogging affects the WRL response is sought57

without any particular clogging configuration in mind. Hence, a global sensi-58

tivity analysis method [3] has been used. It consists in estimating sensitivity59

indices called Sobol’ indices through a Monte Carlo computation scheme.60

They are presented in section 2.2.1. A preprocessing issue is addressed in61
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section 2.2.2. Sensitivity analysis is usually applied to univariate or small62

dimensional output models, hence reduction of the output dimension was63

needed. Section 2.2.3 details how a convenient projection basis can be con-64

structed using PCA. Eventually, section 2.2.4 describes how the validity of65

the results can be assessed with bootstrap confidence intervals.66

2.2.1. Sobol’ indices67

Let us first derive Sobol’ indices for a univariate output model. Let f be
a function that represents the model, x the input vector of size n and y the
scalar output.

f : In→ R
x 7→ y = f(x) (2)

The input can be scaled to take values in [0, 1] so In denotes the n-dimensional68

unit hypercube.69

ANOVA-representation. Assuming f is an integrable function, consider the
following decomposition,

f(x) = f0 +
n∑

s=1

n∑
i1<···<is

fi1...is(xi1 , . . . , xis) , (3)

where f0 is a constant and the fij are functions of subsets of (xi). The1

double sum means that there is a function fi1...is(xi1 , . . . , xis) for each possible2

family of input variables: from f1(x1) to fn(xn), then all the fij(xi, xj) with3

1 ≤ · · · < i < j ≤ n and so on up to f1...n(x1 . . . xn). The number of terms4

in this decomposition is 2 n.5

Sobol’ [7] has shown that under the following condition on the summands
of (3), ∫ 1

0
fi...j(xi, . . . , xj) dxk = 0 for k = i1, . . . , is , (4)

the decomposition exists and is unique. It is then called the ANOVA-6

representation of f . It follows from condition (4) that the summands in7

(3) are orthogonal and can be expressed as integrals of f .8

Order 1 Sobol’ indices. If f is square integrable, then the fi1...is are also
square integrable. Squaring and integrating (3) raises∫ 1

0
f 2(x) dx− f 2

0 =
n∑

s=1

n∑
i1<···<is

∫ 1

0
f 2

i1...is
dxi1 . . . dxis . (5)
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Now if x is a random vector uniformly distributed in In then f(x) and
fi1...is(xi1 , . . . , xis) are random variables whose variances are respectively,

D =
∫ 1

0
f 2 dx− f0

2 (6)

and
Di1...is =

∫ 1

0
f 2

i1...is
dxi1 . . . dxis , (7)

and the following equality holds:

D =
n∑

s=1

n∑
i1<···<is

Di1...is . (8)

In other words, D measures the variability due to variations of all the input9

variables while Di1...is represents the variability caused by variations of the10

variables from the subset (xi1 , . . . , xis). Equation (8) states, as expected,11

that the overall variability is the sum of the variabilities caused by all the12

possible subsets of input variables.13

This leads to define the Sobol’ index of a subset of variables (xi1 , . . . , xis)
by the following ratio,

Si1...is = Di1...is

D
, (9)

where s is called the order of the index. Order 1 Sobol’ indices, Si = Di/D,14

measure the influence of each half TSP clogging ratio alone while higher15

order indices measure the interactions. With 16 input variables there are16

already 120 order 2 indices. Estimating Sobol’ indices requires numerous17

model evaluation so higher order indices were not computed.18

Total Sobol’ indices. the input variables are strongly physically linked so
completely ignoring interactions could be misguiding. As a palliative, con-
sider the sum Dtot

i of the variances caused by all subsets that include a given
variable xi. Dividing this quantity by D, the overall variance, one defines
total Sobol’ indices, Stot

i :

Stot
i = Dtot

i

D
. (10)

The difference between the total index and the order 1 index of a given19

variable represents its interactions with other variables.20
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A simple calculation [8] shows that Dtot
i and the variance D¬i caused by

the subset of all variables except xi, sum up to D :

Dtot
i = D −D¬i . (11)

Hence, each total Sobol’ index can be deduced from the estimation of the21

variance of one subset of variables.22

Computation Scheme. Sobol’ [7] has demonstrated that the variances corre-23

sponding to subsets of variables can be expressed as integrals. Monte Carlo24

estimates of these integrals are provided in [9]. Estimating order 1 and total25

indices of n input variables with a Monte Carlo sample size of N requires26

(2n+ 1)×N model evaluations.27

In this context, standard Monte Carlo relying on pseudo-random num-28

bers is only moderately effective. This is due to the tendency of pseudo-29

random sequences to aggregate into clusters which is detrimental especially30

in high dimension. Substantial improvement is achieved by using a quasi-31

Monte Carlo procedure based on low-discrepancy uniform sequences such as32

Sobol’ sequences [10]. Here a Sobol’ sequence has been used to generate the33

samples, following the procedure prescribed by Sobol’ [9]. The input vector34

coordinates vary from 0 to 0.65 which covers most of practical clogging cases.35

2.2.2. Preprocessing of the output36

The increased pressure drop due to clogging alters both the full power37

‘static’ values of the WRL and its dynamic behaviour. The ‘static’ value38

is presently used for cursory diagnosis of clogging. Examining the dynamic39

response is meant to retrieve more detailed information and to sidestep the40

issue of sensor bias. As the range of variation of the WRL ‘static’ value over41

the years of plant operation is large compared to the dynamic variations of42

the WRL during a power transient, it has been necessary to pre-process the43

data by removing the ‘static’ value trend. Indeed, Sobol’ indices computed44

on unprocessed output reflect only the variance due to differences in WRL45

initial value.46

A straightforward corrective action would be to subtract from each curve47

its initial value. However, this would arbitrarily eliminate the variance of the48

first sequential variables. Subtracting a constant is a crude correction and49

choosing this constant to be equal to the value taken by the initial variable50

concentrates all available accuracy on the beginning of the curves.51
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Let w : t 7→ w(t) be the WRL response function. For a given time t0, one
can write a Taylor expansion of w of the form

w(t) = w(t0) + w′(t0)(t− t0) + w′′(t0)(t− t0)2

2 + · · · . (12)

Averaging (12) for t from 0 to 1148 makes the temporal mean appear as the52

first term of the ‘average’ expansion. Subtracting the temporal mean instead53

of the initial value is a means to distribute the error along the time interval.54

In this way no assumption is made a priori about the most informative part55

of the response curves.56

Five sample WRL response curves are displayed in the left panel of figure57

2. The difference in ‘static’ value can be appreciated by the difference in58

initial value. However, differences in the shape of the curves are difficult to1

distinguish. In the right panel of figure 2, the same curves are presented with2

their temporal mean subtracted. Their shapes appear more contrasted. For3

instance, the circle-marked and x-marked curves are approximately equidis-4

tant from the square-marked one in the left graph but the right graph shows5

that the circle-marked curve has a much more similar shape.6

The validity of the subtraction of a constant has been investigated using7

the PCA results in section 3.1.2.8
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Figure 2: Simulated WRL response curves before and after subtraction of
temporal means.

2.2.3. Reduction of output dimension9

The most straightforward implementation of sensitivity analysis consists10

in considering the value of the WRL at each time step as distinct output11

variables. However this yields a large number of indices which makes the12
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ranking of the input variables and the analysis of their interactions cumber-13

some. Moreover, this approach does not take into account the functional14

nature of the output because it is blind to the high correlation of the sequen-15

tial variables. One way to tackle this issue is to expand the time series onto16

an appropriate orthogonal basis [11–13].17

PCA is a simple method to obtain such a basis directly from the data. The18

optimization criterion used in PCA is the maximization of variance along the19

directions of the basis. As our aim is to attribute shares of overall variances20

to input variables, using a variance based method for dimension reduction21

makes sense.22

Principal components. The principle of PCA is to progressively build an23

orthogonal projection basis by adding directions so that the spanned space24

fits the data the most adequately. Considering the output vector, w = (w(t)),25

as a random vector leads to define principal components (PCs) as ordered26

linear combinations of the original variables, (w(t)), that are orthogonal and27

have maximum variance [4]. For a set of p variables, up to p PCs can be28

found. Coordinates along each PC are called scores; they constitute a new29

set of variables, each representing a smaller share of total variance than the30

previous one. The sample used for the sensitivity analysis can be used to31

estimate the PCs and their scores: the eigenvectors of its empirical covariance32

matrix are the PCs and their variances are the corresponding eigenvalues.33

The scores are then easily obtained by projection.34

A common practice in PCA is to use centred reduced variables to avoid35

scale problems. For instance, if a variable lies in the interval [103, 104] while36

the others vary from 0 to 10, it could cause most of the variance of the dataset37

while varying, relatively, as much as the others. Both types of PCA (with38

‘raw’ variables and centred reduced variables) have been used in this study,39

leading to different types of interpretation.40

Sensitivity analysis on scores. Eigenvalues usually drop quite quickly in mag-41

nitude. PCs of low eigenvalue describe small fluctuations in the dataset and42

one can neglect them without losing information. Keeping only the r most43

prominent PCs allows to sum up the effect of clogging on the shape of the44

WRL response in a manageable number of variables.45

The WRL response curves lie in a p-dimensional space. Excluding the46

p−r PCs of lowest variances comes down to selecting the r-dimensional sub-47

space that most nearly encloses the data, the curves being very ‘flat’ along48
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the directions left aside. Then, Sobol’ indices can be computed on PC scores49

in exactly the same way as sequential indices. In addition of being less numer-50

ous, these new Sobol’ indices present the advantage of being linked to PCs51

whose shapes can be interpreted. A more sophisticated approach using the52

notion of generalized sensitivity indices has been proposed by [13]. Here, the53

small number of PCs with a substantial eigenvalue made it unnecessary.54

2.2.4. Assessing indices validity55

It is important to estimate the accuracy of the computed sensitivity in-56

dices. One wants to know for instance, if the ranking of the indices can be57

trusted as it is or if groups of input variables should be considered. In addi-58

tion, the chosen computation scheme sometimes induces aberrations, such as59

slightly negative indices or sums of indices that exceed one, due to slow con-60

vergence of the Monte Carlo estimates; confidence intervals allow to decide61

if these irregularities can be overlooked or if larger samples should be used.62

For each sensitivity index S, an estimator Ŝ has been computed. Building63

a confidence interval consists in finding Ŝlo and Ŝup so that the two events64

S < Ŝlo and S > Ŝup have both a given small probability. As little is65

known about the distributions involved, bootstrap methods are particularly66

indicated as they are robust and distribution free.67

Bootstrap confidence intervals. The general idea behind bootstrap is to draw68

conclusions about a given estimator by using the empirical distribution upon1

which the estimator is based. The estimator Ŝ is linked to the sample used2

to compute it, ζ, by a function φ: Ŝ = φ(ζ). A bootstrap sample ζ(b) is3

obtained by drawing uniformly with replacement from ζ. For each bootstrap4

sample, a bootstrap replication Ŝ(b) = φ(ζ(b)) is computed in the same way as5

the estimator. It is possible to draw inferences on the underlying distribu-6

tion followed by Ŝ by analysing the empirical distribution of the bootstrap7

replications.8

Bootstrap percentile confidence intervals are constructed by taking the α9

and 1−α percentiles of the empirical distribution obtained after re-sampling.10

The bias-corrected and accelerated (shortened BCa) intervals used in this11

study are derived from the percentile intervals but include a correction of12

bias and an acceleration that compensates for variation of the standard error13

of S with the value of S. These two corrections consist in shifts of the14

percentiles finally chosen from the empirical distribution.15
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Details about bootstrap confidence intervals and their derivation can be16

found in the book by Efron and Tibshirani [14].17

2.3. Sliced inverse regression18

The dimensionality of the model input was chosen on a physical basis:19

it is the most detailed description of clogging that can be reasonably de-20

scribed by a 1D model. However, as the results of the sensitivity analysis21

will show, variations in shape of the response can be satisfactorily accounted22

by a smaller number of variables. Discarding irrelevant variables is neces-23

sary to ensure that the diagnosis method is only used in its applicability24

domain. It also reduces the size of the space to be sampled and allows for25

the construction of meaningful graphic representations.26

Among dimension reduction techniques, sliced inverse regression (SIR) [5]27

bears several practical advantages. It is quite robust, easy to implement and28

based on a very generic model. A generic formulation of the SIR method29

is given in section 2.3.1. For SIR to be really useful, it is necessary to30

determine the dimension the input space can be reduced down to without31

loss of information. A bootstrap technique intended to address this issue is32

presented in section 2.3.2. Finally, section 2.3.3 details what adjustments are33

needed in the multivariate output case.34

2.3.1. SIR principle35

The basic idea behind SIR is to find a limited number of linear combi-36

nations of the predictors that are sufficient to retrieve the information from37

the regression.38

The following model is assumed,

y = g(β′1x, . . . ,β′qx, ε) , (13)

where (βk) is a family of unknown vectors, g is an unknown function taking39

value in Rq+1 and ε is independent from x.40

The space Span[(βk)] is called the efficient dimension reduction (e.d.r.)41

subspace and its elements e.d.r. directions. This terminology emphasizes the42

fact that g is arbitrary and that the βk themselves are not identifiable.43

The inverse regression curve E(x|y) lies in Rn. If model (13) holds, it44

stays always close to a q-dimensional subspace. Appropriate conditions on45

the distribution of x will ensure that it falls into the e.d.r. subspace.46
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Confining the inverse regression curve to the e.d.r. subspace. Consider the47

following condition,48

Condition 1 (Linearity). For any b in Rn, the conditional expectation49

E(b′x|β′1x, . . . ,β′qx) is linear in β′1x, . . . ,β
′
qx.50

Such a condition is difficult to check because it involves the unknown51

(βk). It is however satisfied if x has an elliptically symmetric distribution,52

such as the Gaussian distribution [5].53

Theorem 1. Under model (13) and condition 1, the centred inverse regres-54

sion curve E(x|y)− E(x) lies in the subspace spanned by (Σβk), where Σ is55

the covariance matrix of x.56

Hence, substituting x by its standardized version implies under condition57

1 that the inverse regression curve is contained in the e.d.r. subspace.58

SIR algorithm. The model can produce a sample of WRL responses for an59

arbitrary distribution of x. This sample can then be used to estimate, first60

the inverse regression curve and then, in the same manner as in section 2.2.3,61

the q-dimensional subspace, that most adequately contains it.62

The following algorithm given by Li [5] has been used:63

1. Standardize x using its empirical covariance matrix Σ̂:64

x̃i = Σ̂−1/2(xi − x̄).65

2. Divide the range of variation of y into H slices, I1, . . . , IH , each con-66

taining a proportion ph of the N observations.67

3. Compute the slice averages, (m̂h), of the input individuals:68

∀h ∈ {1, . . . , H}, m̂h = ph
∑
{i|y∈Ih} x̃i.69

4. Compute V̂ = ∑H
h=1 ph m̂hm̂′h.70

5. Find (η̂k), the family of eigenvectors of V̂ sorted by decreasing eigen-71

values.72

6. Output (β̂k) = (Σ̂−1/2η̂k)k∈{1,...,q}.73

In the last step of the algorithm, the n− q eigenvectors with the smallest74

eigenvalues are left aside. It is necessary to determine the dimension of the75

e.d.r. subspace in order to avoid missing information or including spurious76

directions.77
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2.3.2. e.d.r. subspace dimension determination78

Li [5] proposed a statistical test to determine the dimension q. Unfortu-79

nately, it relies on an assumption of Gaussian distribution for x. As a non80

Gaussian distribution has been investigated here, the bootstrap approach81

devised by Liquet and Saracco [15] has been preferred.82

Let BK and B̂K be the matrices whose columns are respectively the vec-
tors (βk) and their estimators (β̂k) with k in {1, . . . , K} . Let PK and hPK

be the Σ-orthogonal and Σ̂-orthogonal projectors onto the spaces spanned
by these same vectors,

PK = BK(B′KΣBK)−1B′KΣ ; P̂K = B̂K(B̂′KΣ̂B̂K)−1B̂′KΣ̂ . (14)

The following risk function,

Rk = 1
k
E
[
Trace(PkP̂k)

]
, (15)

expresses the closeness of the two subspaces: a value close to 1 indicates a83

good match while a value close to 0 reveals important differences.84

A bootstrap estimate R̂k of Rk can be formed as follows [14]: for a given85

bootstrap replication of the sample used to conduct the SIR, the plug-in86

estimator of Rk is87

R̂
(b)
k = 1

k
E
[
Trace

(
P̂kP̂

(b)
k

)]
. (16)

Then ,for B bootstrap replications, the bootstrap estimate is

R̂k = 1
B

B∑
b=1

R̂
(b)
k . (17)

2.3.3. Multivariate output SIR88

Several approaches have been proposed to adapt SIR to a multivariate
context [16]. In this paper, the following adaptation of model (13) is adopted:

y = g(β′1x, . . . ,β′qx, ε) , (18)
where y stands for the multivariate output.89

Then, building on what has been done for the sensitivity analysis in sec-90

tion 2.2.3, SIR has been carried out with the scores of the r selected PCs as91

output variables. Then, a method called Pooled Marginal Slicing (PMS) has92

been applied to the r-dimensional output [16].93
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Pooled Marginal Slicing principle. Applying the SIR algorithm up to step
4 to each of the r components of the multivariate output yields a set of
weighted covariance matrices (V̂i)i∈{1,...,r}. A convex combination with a set
of weights (wi) can be formed,

V̂pool =
r∑

i=1
wiV̂i . (19)

The e.d.r. directions are finally estimated by executing the second half of94

the SIR algorithm with V̂pool.95

3. Results and discussion96

3.1. Sensitivity analysis of the SG model97

First, sequential indices are presented in section 3.1.1. Then the projec-98

tion basis obtained by PCA is presented in section 3.1.2. It is compared to99

PCs obtained with plant data. Finally, section 3.1.3 details the ‘compact’100

sensitivity indices computed with the reduced dimension output.101

3.1.1. Sequential Sobol’ indices102

The size of the Monte Carlo samples has been fixed to 1000 so a total of103

33000 transient simulations have been run for the sensitivity analysis.104

Sequential order 1 and total indices are represented in figures 3 and 4.105

Indices are grouped in graphics by hot and cold leg variables. The shade of106

the curves corresponds to the height of the TSPs: light curves are associated107

to the lower TSP and dark ones to the higher. The error bars represent the108

bounds of the BCa confidence intervals. Only a few of them are presented for109

readability but no discrepancies have been observed on the whole set. There1

are a few negative order 1 indices which is caused by lack of convergence of the2

Monte Carlo estimates. It seems legitimate to consider them as null because3

their error bars are roughly centred on the baseline and the corresponding4

total indices are all close to zero and have very short error bars.5

Both sequential order 1 and total sets of indices display two sharp con-6

trasting behaviours for each leg. The ranking of the indices is the same in7

all cases: the higher the TSP is positioned in the SG, the higher are the8

corresponding sensitivity indices. This is in agreement with the preliminary9

analysis conducted in section 2.1.3. As stated in section 2.2.1, the difference10

between total indices and order 1 indices measures the amount of interaction.11

Comparison of figure 3 and 4 shows that there are only limited interactions12

and that they involve only the highest TSPs.13
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Figure 3: Sequential order 1 Sobol’ indices (l. hot leg; r. cold leg).
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Figure 4: Sequential total Sobol’ indices (l. hot leg; r. cold leg).

3.1.2. Dimension reduction of the model output14

Sequential indices revealed that the impact of clogging changes qualita-15

tively with the SG leg and quantitatively with the level of the TSPs. However,16

the large number of sequential indices makes it difficult to estimate precisely17

the impact of each TSP and the interactions. In order to reduce the out-18

put dimension, a ‘raw’ and a normalized PCA have been carried out. The19

resulting PCs have been compared to those obtained with plant data.20

The first 10 PCs obtained with a uniform sample with ‘raw’ and normal-21

ized variables are displayed in figure 5. The normalized PCs in the right22

panel of figure 5 have been multiplied by the square root of their eigenvalue.23

Hence, it is actually the sequential correlation coefficients between the time24

steps variables and the PCs that are represented. In both cases, the first25

2 PCs account for more than 99.9 % of the overall variance. It shows in26

the normalized variables graphic: the correlation coefficients of the next PCs27

almost do not departs from the baseline meaning that these PCs are only28

marginally correlated with the original variables. The low variance PCs can29

16



be seen in more details in the left panel because they all have an L2 norm30

equal to one. They are rather disorderly and do not look like any general31

feature of the curves except from the oscillations in the beginning that have32

been identified as numerical artefacts.33
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Figure 5: First 10 PCs obtained with the uniform sample (l. ‘raw’ variables;
r. normalized variables)

The first 2 ‘raw’ PCs are polynomials of degree 1 and 2. The first PC34

increases the global slope of the curves by spinning it round a fixed point35

around time 650 s. The second PC increases the curvature by ‘bending’ the36

curves with two fixed points at times 250 s and 900 s. The PC 1 correlation37

coefficients curve is S-shaped with 2 plateaux at +1 and −1 from approx-38

imately 0 s to 400 s and 800 s to 1148 s. In between there are two sharp39

inflexions. This means that the original variables of the beginning of the40

time interval are highly correlated with PC 1 while those at the end are41

highly anti-correlated. The PC 1 correlation coefficients curve is V-shaped42

and points towards 1 around 650 s. Only the time steps variables of the43

middle of the interval are substantially correlated with the PC 2.44

PCA on measured data. A PCA has been carried out on 291 measured re-45

sponse curves from 5 EDF units. The 97 processed transients (there are 346

SGs per unit) spread over a period of 10 years and each unit has undergone47

a chemical cleaning at some points. Hence, the data include a wide array48

of clogging configurations, from very low clogging just after the chemical49

cleaning, to very high clogging just before.50

The first 3 PCs obtained without preprocessing and the first 2 PCs ob-51

tained with the preprocessing described in section 2.2.2 are displayed in figure52

6. On the left panel, the first PC is nearly a constant and its scores are pro-53

portional to the temporal mean of the curves. The PCs are orthogonal by54
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construction so PC 2 and 3 are very similar to PC 1 and 2 from the right55

panel. This validates the chosen preprocessing. The PCs obtained with mea-56

surements are similar to those found with the simulations. This shows that57

the main effects of clogging on WRL are correctly represented by the model58

and that PCA is an appropriate tool to represent them.59
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Figure 6: First PCs obtained on 291 measured response curves (l. before
subtraction of the temporal mean; r. after subtraction of the temporal mean.

3.1.3. Sobol’ indices of reduced dimension output60

The first 2 PCs obtained in the previous section account for almost all61

of the variance of the sample. Comparison with plant data showed that62

they satisfactorily represent the effects of clogging on the WRL response. It63

is straightforward to select those 2 PCs to build a projection basis for the64

reduced dimension output sensitivity analysis. Sobol’ indices computed with65

‘raw’ and normalized PC scores did not differ fundamentally and only the66

former are presented here.67

The results of the sensitivity analysis conducted on the first 2 sets of stan-68

dardized PC scores are displayed in figure 7. Each couple of bars corresponds69

to a TSP. They are lined up from bottom to top in ascending order, hot leg70

first. The light bars represent total indices and the dark bars represent order71

1 indices. The length difference of the two bars of a couple represents the72

interaction in which the input variable is involved. The error bars indicate73

the bounds of the BCa confidence intervals.1

As for the sequential indices, total indices have shorter confidence inter-2

vals and their length is proportional to the value of the indices while order3

1 indices have longer confidence intervals of constant size. A few order 14

indices for PC 1 are negative. The same reasoning as in section 3.1.1 leads to5
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Figure 7: Order 1 and total Sobol’ indices computed with PC scores (l. PC
1; r. PC 2).

consider them as null. There is another aberration: the PC 2 cold leg total6

indices are lower than the order 1 indices. However, the values of the total7

indices are always within the confidence intervals of order 1 indices and the8

confidence intervals of the total indices are small. Thus, it seems sensible to9

assume that these order 1 indices actually equal the total indices and that no10

interaction is involved here. The ranking of the indices is again in agreement11

with the preliminary analysis. On the whole, interactions are rather limited.12

Taking the confidence intervals into account, only TSP 4 to 8 on the hot leg13

and to a lesser extent TSP 7 and 8 on the cold leg seem to be involved in14

substantial interactions.15

3.2. Dimension reduction of the SG model input16

The sequential Sobol’ index curves in figures 3 and 4 are almost propor-17

tional. This suggests that clogging of TSPs of a same leg affect the WRL18

response in a similar manner. In addition, sensitivity analysis on the PC19

scores showed that there are little input variable interactions. These obser-20

vations give credibility to model (13) so SIR is well indicated to simplify the21

model input. The high dimension of the input raises a sampling issue. It22

is addressed in section 3.2.1. Then, results of PC-wise univariate SIR and23

multivariate SIR are detailed in section 3.2.2 and 3.2.3.24

3.2.1. Note on sampling scheme25

Gaussian sampling. A simple means to satisfy condition 1 is to choose a26

Gaussian distribution for x. A sample of 104 response curves for clogging ra-27
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tios following a multivariate Gaussian distribution of mean 0.65/2 and stan-28

dard error 0.65/6 has first been simulated. A few individuals with negative or29

very high clogging ratios have been trimmed without affecting too much the30

elliptic symmetry of the distribution. The first two PCs obtained with this31

sample are similar in shape to those found with a uniform sample displayed32

in figure 5. However, the shares of explained variance are different: the ratio33

of the first eigenvalue to the second is much higher in the Gaussian sample34

case. The standard deviation of the sequential variables is also globally lower35

in the Gaussian case, especially in the middle of the time interval. This is36

due to the fact that the Gaussian sample covers a volume much smaller than37

the uniform sample. At best, the Gaussian sample can efficiently cover the38

hypersphere inscribed into the hypercube [0, 0.65]16. This would not cause39

much trouble in low dimension, but here the hypercube looks more like a sea40

urchin than a cube: it has 216 = 65536 ‘corners’ having each a volume ap-41

proximately 4.25 times higher than the volume of the inscribed hypersphere.42

The previous observations tend to show that the Gaussian sample is unable43

to capture what happens inside the ‘corners’ of the hypercube. Yet, sam-44

pling extensively the hypercube while preserving an elliptic contour for x is45

rendered difficult by its shape. Indeed, trimming and re-weighting a uniform46

sample, following for instance the guidelines of Cook and Nachtsheim [17], is47

unlikely to succeed because the probability that at least one individual out48

of a 104 size sample falls into the inscribed hypersphere is lower than 0.04!49

Flexibility of the linearity condition. Condition 1 is actually weaker than50

elliptic symmetry and SIR can yield sensible results in cases that does not51

exactly comply with it. It has been shown by Diaconis and Freedman [18]52

that most low-dimensional projections from a high-dimensional data set are53

approximately Gaussian. Hall and Li [19] extended this result showing that54

low-dimensional projections of high-dimensional data are almost linear. As55

an illustration, a simulation example of e.d.r. directions correctly identified56

by SIR with a uniform sample in dimension 10 is given in the rejoinder of [5].57

Here the dimension is higher and the data are relatively smooth because they58

are produced by a model so it can be expected that SIR would work in spite59

of a violation of condition 1. The bootstrap dimension determination method60

has been successfully tested with a strongly non elliptically distributed input61

[15]. A 104 size uniform sample of WRL response curves has been simulated62

in order to investigate the model’s behaviour inside the ‘corners’. The results63

obtained with this uniform sample are presented below.64

20



3.2.2. Marginal slicing65

Marginal slicing has been applied to the first two PCs of the data set.66

Using ‘raw’ or normalized PCA made but little difference so only the results67

with normalized PCA are presented here. The number of slices had also a68

very limited influence. Here, 33 slices of cardinal 303 have been used.1

Bootstrap estimates of the risk function for the e.d.r. space dimension2

have been computed using 500 bootstrap replications. Corresponding box3

plots for the uniform samples are given in figure 8. In both plots, the mean4

of R̂k is first close to 1, then decreases steeply down to around 0.7 and5

eventually climbs up until it reaches 1 for k = 16. The variance of R̂k is close6

to 0 on the initial plateau, then it soars at the beginning of the drop in mean7

and eventually decreases regularly down to 0 as k increases up to 16. The8

increase in mean in the third part of the plots is a consequence of the growth9

of the basis. Additional directions progressively restrict the angular domain10

where the directions found with the bootstrap replications may differ from11

those found with the original sample. This shows through the progressive12

reduction of the variance of R̂k as k increases. When k equals 16, P̂k and the13

P̂
(b)
k are proportional to the identity.14

The dimension of the e.d.r. space is given by the highest value of k15

for which the mean of R̂k is nearly 1 and its variance nearly 0 [15]. Here,16

it is equal to 2 for both sets of PC scores. The first two directions found17

with the uniform sample are displayed in figure 9. The Gaussian sample18

yielded similar results but the directions were a little less monotonous which19

goes against physical reasoning. It was not able to retrieve the second e.d.r.20

direction with the PC 1 scores.21
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Figure 8: Box plots of R̂k values with uniform sample for the PC 1 (l.) and
PC 2 (r.) scores.
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Figure 9: e.d.r. direction obtained with uniform sample for the PC 1 (l.)
and PC 2 (r.) scores.

3.2.3. Pooled Marginal Slicing22

The dimension of the e.d.r. space yielded by PMS (see section 2.3.3)23

with the two sets of PC scores is equal to 2 as can be seen on the left panel24

of figure 10. The right panel of figure 10 displays an orthogonal basis of25

the plane spanned by the first 2 directions found with the uniform sample.26

The vectors have been combined so that hot and cold legs are as separated27

as possible between. They are normalized to have a L1-norm equal to 1 so28

that the coordinates vary in the same range as clogging ratios. Using PMS29

made SIR more robust to changes in the sampling scheme. Indeed, the basis30

obtained with the Gaussian sample was nearly the same as the one displayed31

in figure 10. The R̂k values also indicated that the e.d.r. space is a plane but32

in a less obvious manner.33
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Figure 10: Box plots of R̂k values (l.) and e.d.r. space basis (r.) obtained by
PMS with the uniform sample.

The two e.d.r. directions found correspond to weighted averages of the34

22



clogging ratios of each leg. This means that a clogging diagnosis based on35

WRL response curve analysis will consist of hot and cold average clogging36

ratios.37

The results illustrate the fact that SIR can provide interesting results38

even when the linearity condition is not fully satisfied. When the input39

dimension is large, elliptically contoured distributions are unlikely to be able40

to efficiently cover the domain of interest. In such cases, uniform sampling is a41

straightforward alternative to Gaussian sampling and the bootstrap method42

proposed by [15] can be used to determine the e.d.r. subspace dimension.43

4. Conclusion44

A methodology combining several statistical techniques has been carried45

out with a 1D SG model. It allowed to characterize the information about46

the clogging state of a SG that can be inferred from its WRL response to a47

power transient. The study has shown that :48

- clogging affects the WRL response in two distinct ways. It alters its49

global slope and its curvature.50

- These effects depend on the leg of the SG and the elevation of the1

clogging sites. Clogging of the hot leg and cold leg have a different2

impact and the former is predominant. The higher is the clogging site3

in the SG, the greater is the magnitude of the alteration.4

- The WRL response curves can be resumed by vectors of size 2, each5

coordinate describing respectively the global slope and the curvature of6

the curves. The clogging state of individual half-TSPs cannot be iden-7

tified by analysing the WRL response. The diagnosis actually consists8

in average clogging ratios of each legs.9

The low dimensions of the simplified input and output provide a convenient10

framework for future development of a diagnosis methodology. Two response11

surfaces, one for each direction of the e.d.r. subspace basis, can be built by12

swapping the input and output. Then, any measured WRL response can be13

projected on the PC basis yielding two coordinates. The average clogging14

of each leg is then indicated by the heights of the two response surfaces15

associated to the couple of coordinates.16

The methodology can be easily adapted to other diagnosis contexts. Here17

are three remarks to serve that purpose. The derivation of the diagnosis18
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method is mainly based on the dimension reduction achieved with PCA and19

SIR. However, the basis of the e.d.r. subspace that SIR outputs may not20

be the most pertinent for the diagnosis. The sensitivity analysis provides21

valuable insights on the role of each input variable and suggests meaningful22

combinations of the e.d.r. directions found with SIR.23

When the input dimension is high and it is suspected that important24

features may appear only for extreme values of the input variables, the SIR25

should be carried out with both a Gaussian sample and a uniform sample.26

Possible inconsistencies in the results can be caused by a too strong violation27

of the linearity hypothesis in the uniform sample case. In such a situation,28

the sensitivity analysis can be used to remove the least influential input29

variables prior to the SIR. Keeping only the 3 to 5 most prominent variables30

allows to build a Gaussian sample that covers a more reasonable portion of31

the hypercube domain.32

Finally, in situations where the output is more complex, that is, when33

there are more PCs with non-null eigenvalue, the reduction of the output34

dimension can be carried out in a more sophisticated way. One drawback of35

using the PC scores as the new output variables is that this choice is inde-36

pendent of the input. Using Hotelling’s theory of most predictable variates,37

Li et al. [20] have proposed an extension of SIR that relies on the data to38

find the output projection basis.39
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