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I. INTRODUCTION

System monitoring aims at preventing failures. Potential
failures induce financial risk (e.g. stopping a production
line) or safety issues (e.g. malfunction of a nuclear plant
component). Diagnosing the system consists in studying its
health condition, in order to state or predict the failures
and their cause. Performing regular diagnosis of the system
enables to optimise the maintenance operations and forecast
the remaining life expectancy of the system.

Data-driven monitoring for industrial processes has received
large attention over the past years. Statistical learning methods
such as clustering enable to use data from sensors to detect
outliers and identify faults. However, data-driven monitoring
requires lots of observations of the system to yield accurate
results. There is also no possibility to include physical knowl-
edge on the system under study in the diagnosis [1].

A digital twin is a numerical model representing the physics
of an existing system. It uses real-time data of the system,
collected by sensors, to reproduce at best its current state.
We calibrate a digital twin via statistical learning method and
monitor the system’s health through its twin. Our purpose is
to determine the optimal planning of the next maintenance
operation.

For better understanding of the methods and the stakes, we
focus on a case study. The observation data used here were
fabricated for the purpose of illustration by adding random
noise to numerical simulations. It is inspired from a real
application [2].

We consider a cooling system relying on a centrifugal
pump, activated by a motor (see Figure 1). A centrifugal
pump converts rotational energy from a motor to energy in a
moving fluid, which creates pressure. The motor-pump system
is required to reach 90% of its nominal flow rate in less than
30 seconds. Otherwise it is considered unsafe.

In the following, we analyze observations of this system
so as to infer maximal information from them. We create
a physical model of the pump-motor system and calibrate
it using the extracted information. The resulting digital twin
enables to plan upcoming maintenance.

II. EXTRACTION OF INFORMATION FROM OBSERVATIONS

Three motor-pump system units are observed, called Park,
Colt and Monk. These units have similar motors and pumps,

Fig. 1. Example of a centrifugal pump [3].

only they have been in service for different durations and have
undergone different damage. When the motor starts, the fluid
is pumped with increasing speed, and the nominal flow rate
is reached after a few seconds. We have at our disposal one
observation of the transient regime of each motor-pump unit
per year, over the past 10 years. The last observed transient
regime for each pump is represented on Figure 2.
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Fig. 2. A transient response for each unit.

For safety reasons, each pump is required to reach 90% of
its nominal flow rate in less than 30 seconds. Figure 2 shows
that the pump Park reaches its nominal flow rate faster than
the two others. The time to 90% nominal has been observed
for each pump during the past 10 years. These times are



represented on Figure 3.
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Fig. 3. The time to 90% nominal for each unit, over 10 years.

The time needed to reach the optimal mass flow rate
increases over time. This increase get stiffer for the Colt
and Monk pumps, which lets suspect a fault in the units.
Without hints of the underlying physics, the fault origin can
not be identified. The time of failure can be extrapolated
from Figure 3 via non-linear regression, but with very poor
reliability. Modeling the physics of the motor-pump system is
necessary to identify the fault origin and its related time of
failure.

III. CONSTRUCTION OF MATCHING PHYSICAL MODEL

The pump-motor model is represented on Figure 4. It is
designed with ThermoSysPro [4], a Modelica [5] library for
modeling thermal-hydraulics systems. Statistical analysis is
performed in Python, using the modules OpenTurns [6] and
Otfmi [7].

Fig. 4. The physical model using ThermoSysPro library.

The physical model represents the generic pump-motor
system. The centrifugal pump, symbolized by a blue triangle
within a green circle, is connected to the motor and to a circuit.
This circuit is composed of a pipe resistance component, a
valve and an open water tank. The model is simulated on a
duration of 50 seconds. Its output is the mass flow rate during
the transient regime of the system. As the discretization step
is of one step every two seconds, the output of the model is
composed of 25 scalar values.

The degradation mechanisms are modeled on 2 input param-
eters. The gradual degradation of each unit corresponds to an
evolution of 2 input parameters. The first input parameter is the
damping of the motor. The second is a characteristic parameter
of the pump, linked to its efficiency. Hence the physical model
used in the following has 2 (scalar-valued) input parameters
and 25 (also scalar-valued) outputs.

The estimation of degradation parameters enable the cali-
bration of the physical model, and thus its use as a digital
twin for each pump. Bayesian inference is used in the fol-
lowing to estimate the parameter values (i.e. to inverse the
model). However, Bayesian inference requires lots of model
evaluations. Model reduction is first performed to circumvent
heavy computations.

IV. MODEL REDUCTION VIA STATISTICAL LEARNING

Model reduction consists in learning the behavior of a model
via statistical methods [8]. Thereafter the statistical model can
be run, instead of the physical one, at a lower computational
cost.

A major obstacle in model reduction is the large dimension
of the output of the model. Indeed, every single scalar output
has to be learned. This is computationally expensive. More-
over, the information contained in the successive time steps is
redundant. In our context, 25 scalar outputs is large.

To overcome this hurdle, principal component analysis is
performed on the output of the model [9]. We choose to reduce
the dimension of the output to 2 as the ratio of variance
accounted for is 99.6%. Hence we have at our disposal the
physical model which output has been compressed.

Gaussian process emulation [10] is used to learn the model
with compressed output. Only 2 Gaussian processes have to
be learned. The reduced model thus has 2 inputs, the motor
damping and pump characteristic coefficient, and 2 outputs. To
recover the original dimension of the output, inverse principal
component analysis is applied.

The reduced model is learned on a set of 128 runs of the
physical model, and tested on a set of size 64. The results of
this model reduction are represented on Figure 5.

0

200

400

Physical model

0 10 20 30 40 50
Time (s)

0

200

400

Gaussian process emulator

M
as

s f
lo

w 
ra

te
 (k

g/
s)

Fig. 5. Output of the physical and reduced models for the same inputs.



The relative error per time step on the prediction of the
test sample is computed to assert the quality of the reduced
model. The maximal relative error made on all time steps is
1.5%, the mean relative error is 0.2%: the reduced model
reproduces well the behavior of the physical model. We
estimate the degradation parameters on the reduced model,
as its computational cost is much cheaper.

V. DIGITAL TWINS CALIBRATION

To calibrate the digital twins and infer the time of failure
of each system, we need to recover the input values from the
observations of the transient responses. These values have to
be computed for each pump-motor unit, at each observation
year. The mathematical frameworks for this inference are
model inversion and data assimilation.

Bayesian inference is a statistical inference method based on
Bayes’ formula. The probability distribution of the inputs of
the model is assumed. The likelihood of the observations under
this assumption is numerically estimated. Thanks to both, the
probability distribution of the inputs knowing the observations
can be computed. The bayesian estimate of the inputs is the
mean or the median of the probability distribution, depending
on the risk chosen.

We perform a Bayesian computation for each unit at each
year, with the single corresponding observation. For the first
year of each unit, the prior distribution on the input is chosen
uniform. For the following years, the prior distribution is
updated knowing the value of former years. The chosen
probability distribution is Gaussian, centered of the most likely
input value of the former year.

The results are represented on Figure 6. The computed
pump characteristic coefficients are close to their true value
for all units: the maximal relative error on all times and units
is 7.1%, the mean relative error is 3.4%. The computed motor
damping undergoes at worst 9.9% relative error, on the Monk
unit. The mean relative error is 3.5%, similarly to the pump
coefficient.

The digital twins representing the three units are calibrated
using the Bayesian estimates from most recent observations.
Before turning to failure prediction, we identify the origin of
the suspected faults using the estimated degradation parame-
ters.

Figure 6 shows that the pump coefficient degradation is slow
for the Park and Monk units, faster for the Colt unit. We know
that the pump coefficient is linked with the efficiency: high
values correspond to a good functioning. For a system under-
going usual time degradation, the pump coefficient diminishes
linearly with time. The rapid degradation of the coefficient of
unit Colt is thus symptomatic of a problem in the pump.

Similarly, the motor damping values remain relatively
steady over time for the units Park and Colt, whereas it
increases linearly for the unit Monk. The motor damping
represents mechanical losses in the motor. These losses are
minimal in a motor working properly, and should not increase
over time. The increase in motor damping of the Monk unit
is thus characteristic of a motor problem.
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Fig. 6. Bayesian estimates of the model inputs for each unit. The estimates
are represented by crosses, the real values by dots. Recall the experimental
data were fabricated with addition of random noise.

In a nutshell: the Park unit is in good health, whereas the
pump of the Colt unit and the motor of the Monk unit should
be investigated.

VI. PREDICTION OF THE TIME TO FAILURE

We assume the evolution of the degradation parameters
to be linear. We fit a linear regression on the estimated
parameters of each unit. Figure 7 shows the regression straight
lines, extended over 7 years. The 90% confidence interval for
new observations is represented along the straight lines. The
parameters true values lie in the confidence interval, which
shows the quality of Bayesian estimates.

The failure of the pump occurs when its time to 90%
nominal exceeds 30 seconds. We define the time to failure
as number of years until the probability of failure exceeds
5%. We propagate the uncertainty on the forecast degradation
parameters through the digital twins to estimate the time to
failures. The probability distribution of each parameter at each
year is normal (following the linear regression assumptions).
The marginal probability distributions for Monk and Colt units
are represented on Figure 8.

We propagate the uncertainty through the Colt digital twin.
We observe that, when the pump coefficient is lower than 1.8,
the digital twin enters a non-physical mode, corresponding to
a breakdown in the unit. This nonphysical mode occurs with
a probability exceeding 5% in year 12.

The Colt unit suffers of a motor damping increase, leading
to an increase of its time to 90% nominal . Figure 9 shows the
evolution of the time to 90% nominal probability distribution
over the years. The Colt unit time to failure is estimated to 5
years, i.e. in year 15.
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Fig. 7. Linear regression of the Bayesian estimates, represented with the
parameters true value. The further we extrapolate, the larger the confidence
interval for new observations gets.
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Fig. 8. Marginal probability distributions of degradation parameters for the
units Colt and Monk.
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Fig. 9. Evolution of the time to 90% nominal probability distribution.

In a nutshell: the Monk pump should be fixed within 2
years, and the Colt motor replaced within 5 years.

VII. CONCLUSION

We combine statistical analysis of the observations with a
physical modeling of the observed system. The analysis of the
evolution trends of some system parameters, using the physical
model and the observations, enables root-cause diagnosis and
prognosis. This approach is illustrated on a fabricated example
in Modelica, based on a real system. Main applications of this
work are targeted and predictive maintenance.
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