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Graphical abstract : Comparison of decision maps obtained with the Add4 frequentist interval (left) and the Bayesian
estimators (right). The decision maps have three zones, red zone with a strong evidence that action is required, white
zone with a strong evidence that action is not necessary, and grey zone where decision is not possible without exceeding
the chosen risk. We show that the Bayesian estimator is robust against loss of significativity while the uncertain grey
area covers the decision map of the frequentist estimator.
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In the event of accidental or malevolent atmospheric releases, decision-makers have to swiftly25

implement mitigating measures. Decisions are often based on the determination of danger zones26

and safe zones in which the concentration levels of substances emitted into the air are respectively27

above or below a given hazardous threshold. However, the maps representing the danger zones28

are established from atmospheric dispersion models whose input data on meteorology and29

the source term are uncertain. In addition, these maps are drawn from a limited number of30

simulations of atmospheric dispersion. Thus, if we consider confidence or credible intervals on31

low probabilities of exceeding concentration threshold, the "grey zone" in which no decision32

is possible can extend considerably. In this paper, we deal with this issue by developing a33

methodology to accurately estimate the probability of exceeding a concentration threshold of34

a substance adversely released in the atmosphere. Confidence or credible intervals associated35

with the probability of exceeding a given concentration are determined by taking into account the36

spatial correlation of the concentration field modelled by Gaussian processes. This methodology37

proves its effectiveness in lowering the significance limit of the probability estimates and allows38

for a more accurate estimate associated with a lower risk, especially in low probability areas.39

Moreover, it is applicable to various situations in terms of concentration threshold, accepted40

estimation risk and number of simulations. Finally, it appears promising for building maps41

of danger zone actually useful for decision-makers and will be implemented in a numerical42

decision-support tool following this work.43
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1. Introduction45

When hazardous materials are released into the atmosphere, first responders must act promptly and implement46

mitigation actions like sheltering or evacuating the population. To face an emergency, practitioners like firefighters47

need methods generally implemented in computational tools to help them evaluating the seriousness of the situation48

and to support decisions. In this paper, we present an approach to determine danger zones using scientifically rigorous49

decision criteria.50

Indeed, a review of the literature in this field shows a need for the development of rigorous, reliable and robust51

tools for decision support. This development faces the difficulties of simulating transport and dispersion phenomena52

notably due to the intrinsic fluctuations of the atmosphere and the high level of uncertainty on both the models and53

their input data (Gunawardena et al., 2021). Quantitative probabilistic hazard mapping is used for mitigating the health54

risk related to the release of hazardous materials into the atmosphere in support to effective crisis response (Barsotti,55

2020). However, some occurrence of underestimation can make this method insufficient in the case of atmospheric56

dispersion when one seeks to be conservative, limit exposure as much as possible and control the risk associated with57

decision making. As early as the 1950’s, authors were interested in the propagation of uncertainty in atmospheric58

dispersion models (Strom and Ingram (1951), Gifford (1959)). Since then, numerous methods have been developed for59

accounting for the uncertainty inherent to those simulations. Restricting ourselves to recent years, Girard et al. (2020)60

present two contributions for accounting for the uncertainty inherent to those simulations. One possible approach to61

modelling those uncertainties is to use ensembles of input data, in particular ensembles of meteorological data. The62

other approach is to apply stochastic perturbations to the input conjecture.63

The meteorological conjecture is usually obtained from simulations with meteorological models. Several authors64

suggested to apply uncertainty propagation to those models, or to use sets of different models to build ensembles65

of input meteorological conditions (Galmarini and Bianconi (2004), Warner et al. (2002)). However, as Dabberdt66

and Miller (2000) points out, it is rather unlikely that such an ensemble of conjectures might be available in a crisis67

context. Indeed, considerable efforts must be spent to calibrate such ensembles (Garaud and Mallet, 2011), (Zhang68

et al., 2012), and the calibration process requires reference data that are most often not available when dealing with69

accidental releases. Moreover, the calibration carried out at large scale may be inadequate to accidental situations at70

local scale. For instance, LE et al. (2021) make use of weather forecast ensembles to take into account meteorological71

uncertainties and propagate the input uncertainties through a dispersion model. While trying to cover all the possible72

range of variation of the uncertain variables, they do not manage to reproduce the air concentration measurements due73

to the coarse resolution of the weather simulations.74

The alternative method chosen in this paper is to apply perturbations to the most influential parameters of the flow75

and dispersion models. Girard et al. (2016) study the relative influence of a set of uncertain inputs on several outputs76
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from a dispersion model approximated by Gaussian process emulation. While aggregated outputs are mainly driven77

by the amplitude of the release, they show that local outputs are extremely sensitive to wind perturbations. Leadbetter78

et al. (2020) examine the sources of uncertainty in a large number of numerical studies based on dispersion modelling79

both in the near field and in the far field. They conclude that the imperfect knowledge of the wind direction and release80

rate is highly influential, followed by the wind speed and release timing, and then precipitation. Consistently, these81

studies illustrate the necessity to consider the uncertainties associated with meteorology and release conditions. For82

this purpose, one can replace the commonly used deterministic map by a probabilistic risk map (Armand et al., 2014).83

However, the probabilistic risk map does not take into account the uncertainties on the probability of exceeding a84

threshold. Thus, a probabilistic risk map constructed on a small set of simulations, as it is the case in a crisis situation,85

is highly uncertain, especially at the decision boundary.86

In our approach, we simulated the dispersion of pollutants in the atmosphere using a modeling system whose87

input data relating to the meteorological conditions and the source term, were extremely uncertain. While epistemic88

uncertainties are not the only ones, taking them into account in a probabilistic framework is absolutely required for89

reliable decision-making (Girard et al., 2020). In this study, our objective was to estimate the probability of exceeding a90

concentration threshold that may represent a certain level of danger for human health or the environment. To make the91

theoretical considerations that we developed concrete, we considered a case study inspired by the industrial incident92

that occurred in January 2013, at the Lubrizol chemical plant located in Rouen, France. This builds up on our previous93

paper Girard et al. (2020) and the state of the art in which danger zones are determined from point estimation of the94

exceedance probabilities.95

First, we estimated the probability of exceeding a concentration threshold using a deterministic approach. This96

technique does not take uncertainty into account. To overcome this, we then used a Monte Carlo approach with97

uncertain input data and point estimation. However, this method leads to a single value estimate of the probability of98

exceeding a concentration threshold . Thus, we tried to associate confidence and credible intervals to this probability.99

Even if this technique grasps uncertainty well, it has a limit of significance. To lower this limit, we took advantage of the100

spatial structure of the concentration results and finally used a credible interval with a conditional spatial independence101

criterion, which constitutes the final goal of the strategy presented in this paper.102

The paper is organized as follows. In section 2, we describe the accidental situation, and the flow and dispersion103

models used to simulate it by conjecturing the input data. We thus produce a deterministic map of the area where104

a concentration threshold is exceeded corresponding to a potential hazard. Note that the method developed in the105

following is not adherent to the dispersion model. In section 3, we present our first approach to generate a probabilistic106

map by propagating uncertain input data and post-processing the results of the simulations to determine the fraction of107

exceedance of the concentration threshold at each point of the map. In section 4, we take into account the uncertainties108
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on our estimates by considering confidence intervals, namely Wald or Add4 mean correct intervals. This method109

reveals zones with a strong evidence that the concentration threshold respectively is or is not exceeded, but also a "grey110

zone" where decision is not possible. We also show that the combination of a small sample of simulations with low111

concentration threshold and/or low probability of exceedance and/or low accepted risk level leads to an extension of112

the grey zone making the probabilistic map of the danger area useless for decision-makers. Thus, it is the motivation113

to go further in the production of a probabilistic danger map. In section 5, we present a Bayesian hierarchical model114

based on Gaussian processes able to reproduce the spatial correlation underlying a 2D concentration field. After giving115

the definition of a spatial Gaussian process, we explain how the posterior distributions of its parameter may be built116

from their prior knowledge and Monte Carlo Markov Chains using the Metropolis-Hastings within Gibbs algorithm. In117

section 6, we validate the hierarchical model by creating concentration data from a realization of a Gaussian process,118

then reconstructing these synthetic data from non informative priors and Markov Chains converging to the values of the119

Gaussian process parameters. We also show that maps of the probability to exceed a concentration threshold are similar120

when they are drawn using the mean of realizations of the concentration field, the mean of realizations of the Gaussian121

processes (underlying the concentration fields), and the mean of Markov Chains simulating the Gaussian processes.122

Using the same synthetic data, we demonstrate that the Bayesian credible intervals determined with Gaussian processes123

are notably narrower than the Add4 intervals computed for the concentration threshold exceedance. Thus, the grey zone124

becomes smaller taking advantage of the spatial correlation. In section 7, we eventually apply the Bayesian hierarchical125

model to the danger map associated to the accidental situation described in section 2. Again, we show that the grey126

zone is strongly diminished when Gaussian processes are used to account for the spatial structure of the concentration127

field in comparison to simple point estimates. Adversely, we have to point out that our method is hampered by lengthy128

computational times. In section 8 we conclude on future developments intended to reduce these times and make our129

original approach operational. The figure 1 summarizes the techniques and methods discussed in the paper, and situates130

them in the context of the study. The innovation of our approach lies in the consideration of the risk associated with131

the danger maps.132
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Figure 1: Graphical summary of the methods and concepts studied in the paper.

2. Deterministic simulation of an accidental situation133

In this paper, we considered a real industrial accident that happened on January 2013, at the Lubrizol chemical134

plant (Rouen, France). Operational mistakes and system failures in the plant resulted in extended releases from135

the plant stacks of hydrogen sulfide and mercaptan, both of which are foul-smelling when they exceed a specified136

concentration. Consequently, thousands of people were able to smell the chemicals, some of them suffering from nausea137

and headaches. The features of the incident are very complex in several respects, namely the terrain characterized by138

rugged topography and alternating industrialized, urban and natural areas, the long-lasting and variable kinetics of139

the releases, and the highly variable meteorological conditions during and after the releases. Therefore, we selected140

this incident to link the theoretical considerations developed in our paper to a real and very challenging situation.141

Nevertheless, we make no claim to indicate how this situation should have been handled or how the same type of142

situation should be handled if it were to occur again. For purely practical reasons, we studied the chemical releases143

over a 35 kilometers wide square area, centered on the accident site. The mesh is 3D with a horizontal resolution of 2144

meters and a vertical resolution of the same order close to the ground and decreasing with the height up to the top of145
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the domain at 1000 meters. The simulation covers a 35-hour period, so that all hazardous materials have either been146

deposited or have left the simulation domain by the end of the period.147

The dispersion simulations were carried out using Parallel-Micro-SWIFT-SPRAY (PMSS). Originally, Micro-148

SWIFT-SPRAY (MSS) (Tinarelli et al., 2013) was developed to provide a simplified but rigorous CFD solution of the149

flow and dispersion in built-up environments in a limited amount of time. MSS is composed of the high resolution150

local scale versions of the SWIFT and SPRAY models:151

• SWIFT is a 3D diagnostic and mass-consistent model using a terrain-following coordinate. Large scale152

meteorological data, local meteorological measurements, and analytical formulae in building-modified flow153

areas are interpolated and adjusted to generate 3D wind fields. Other meteorological data such as temperature154

or humidity are also interpolated. Eventually, the turbulent flow parameters are computed by SWIFT to be used155

by SPRAY.156

• SPRAY is a Lagrangian particle dispersion model (LPDM) able to take into account the presence of obstacles.157

The dispersion of the release is simulated by following the trajectories of a large number of fictitious particles.158

Trajectories are obtained by integrating in time the particle velocity which is the sum of a transport component159

defined by the local averaged wind generally provided by SWIFT, and a stochastic component, representing the160

dispersion due to atmospheric turbulence.161

Both SWIFT and SPRAY can handle complex terrains and changing meteorological conditions, as well as specific162

release features, such as heavy or light gases. More recently, SWIFT and SPRAY were parallelized across time, space,163

and numerical particles, resulting in the PMSS system (Oldrini et al., 2017). The parallelism was shown to be very164

efficient, both on a multi-core laptop and on clusters of several hundreds or thousands of cores in the case of a high-165

performance computing center (Oldrini et al., 2019) (Armand et al., 2021). PMSS was systematically validated over166

numerous experimental wind tunnel and field campaigns for both short and extended releases (Castelli et al., 2018). In167

all the investigated configurations, PMSS results comply with the statistical acceptance criteria defined by Hanna and168

Chang (Hanna and Chang, 2012) commonly used for validating dispersion models in built-up environments.169

The deterministic simulation was based on a conjectured input data based on the best of the knowledge about the170

situation. The conjectured rate of chemical emissions (also called source term) was adapted from data established by171

Ismert and Durif (Ismert and Durif, 2014). The conjectured rain and wind fields were obtained from the community172

reconstruction weather and forecast meso-scale modelling system WRF (Skamarock et al., 2005). Our objective was to173

predict whether an arbitrary concentration threshold of a chemical, namely 2𝜇𝑔.𝑐𝑚−3, was exceeded on the studied area174

and time period. It is worth noticing that this value is below the olfactory detection limits of the chemicals involved in175

the incident in order to create a sufficiently large area where the population and first responders could be hypothetically176
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at risk. One can observe the results of this simulation on figure 2. Even if this model enabled us to make some predictions177

on the concentrations, it did not take uncertainty on the input data into account. Yet, these inputs are substantially178

uncertain, and the results are too.179

Figure 2: Deterministic map showing the area where the chemical concentration threshold is exceeded

3. Probabilistic simulations of the accidental situation using uncertain input data180

Next, we accounted for uncertainty in the input parameters focusing on the source term and on the meteorological181

conditions known as mainly influencing the dispersion of the chemicals, namely the wind velocity, the wind direction,182

and the rain intensity (Stockie, 2011). We carried out 100 simulations using PMSS with different sets of input183

parameters. This sample has a quite small size due to the duration of each simulation of the order of one hour. It is184

representative of the number of simulations that could be performed in a real emergency, even though it is worth noting185

that simulations can be run in parallel on suitable computing resources. The sets of input parameters are generated by186

perturbing the wind velocity, wind direction, and rain intensity as presented in Girard et al. (2020).187

Despite the aforesaid deterministic presentation of the flow and dispersion model, uncertainty can be taken into188

account in the modeling system. Let 𝑌 (𝑠, 𝑡) be the term of propagation of uncertainty in space and time. In this case,189

it represents the concentration of the chemical in 𝜇𝑔.𝑐𝑚−3 at a given point in space and time. In this paper, we assume190

that 𝑌 is continuous over ℝ3. Symptoms induced by exposure to the chemical are triggered when the concentration191

near the ground reaches given values. We therefore focused on the maximum temporal concentration at each location192
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throughout the simulation: 𝑌 (𝑠) = sup
𝑡∈[𝑡0,𝑡simu]

𝑌 (𝑠, 𝑡), with 𝑡0 and 𝑡simu being respectively 2013-01-21 8:00 am and 2013-193

01-22 7:00 pm. Let us notice that another interesting output variable would be the maximum of the time derivative of194

concentration as human olfaction is more sensitive to changes than to absolute values of concentration.195

Let 𝑋 represent the real random vector of uncertainties. For time 𝑡 and point 𝑠, 𝑋(𝑠, 𝑡) can contain any kind of196

information, such as continuous variables like spatial coordinates or distance to the source term, or time-dependent197

variables like source term, rain intensity, wind speed, wind direction. Let 𝑓 be a measurable function called numerical198

model of atmospheric dispersion. One may want to assess the distribution of 𝑌 (𝑠) = sup
𝑡
𝑓 (𝑋(𝑠, 𝑡)). Let 𝜁 ∈ ℝ+

199

be a fixed concentration threshold and 𝑍(𝑠) = 𝐼{𝑌 (𝑠)>𝜁} be a variable worth 1 if the concentration exceeds the200

concentration threshold at a point 𝑠, and 0 otherwise. Let 𝑍 follows a Bernoulli distribution of parameter 𝑝𝑋 :201

𝑍 ∼ (𝑝𝑋). 𝑝𝑋(𝑠) = Pr(𝑌 (𝑠) > 𝜁) represents the probability that the concentration at 𝑠 is higher than the concentration202

threshold. Let 𝑝𝑙𝑖𝑚 ∈ [0, 1] be the threshold of the probability of exceeding a concentration. We focus on the event203

{𝑝𝑋(𝑠) > 𝑝𝑙𝑖𝑚}, which enables us to make a decision at point 𝑠.204

Let’s consider the sampling model ((𝑝𝑋))𝑝𝑋∈Θ=[0,1]. Let 𝑍1(𝑠), .̇., 𝑍𝑛(𝑠) be a n-sample of 𝑍(𝑠), that is to say205

𝑛 independent and identically distributed (i.i.d.) random variables that follow a Bernoulli distribution of parameter206

𝑝𝑋(𝑠). In our application, this sample is constituted by the 100 simulations of flow and dispersion around the Lubrizol207

site using 100 different sets of parameters.208

Let 𝑆𝑛(𝑠) =
∑𝑛

𝑖=1𝑍𝑖(𝑠) ∼ (𝑛, 𝑝𝑋(𝑠)) be the number of times the concentration at 𝑠 exceeds the threshold.209

(𝑛, 𝑝𝑋(𝑠)) is a binomial distribution with parameters 𝑛 and 𝑝𝑋(𝑠).210

In a previous work Girard et al. (2020), we estimated 𝑝𝑋(𝑠) with the sample mean estimator: 𝑃𝑛(𝑠) = 𝑆𝑛
𝑛 . The211

expected value of this estimator is 𝔼(𝑃𝑛(𝑠)) = 𝑝𝑋(𝑠), and its variance is 𝕍 (𝑃𝑛(𝑠)) = 𝑝𝑋 (𝑠)(1−𝑝𝑋 (𝑠))
𝑛 . The resulting212

estimated probabilities are shown in the figure 3.213

4. Introduction of confidence and credible intervals in the danger map214

Until now, the danger map built with the sample mean estimator ignored the level of confidence in the prediction.215

An area where the probability of exceeding the threshold 𝑝𝑋(𝑠) is lower than the threshold 𝑝𝑙𝑖𝑚 by 0.1% is therefore216

announced as "safe". A decision based on the sample mean does not take the estimation uncertainty into account,217

contrary to credible and confidence intervals. In order to introduce the level of confidence at each point of the danger218

map, we decided to present the results with credible or confidence intervals. The difference between these intervals is219

that credible intervals account for the actual observed sample, here dispersion simulations, which is not the case for220

confidence intervals. More information on the difference between credible and confidence intervals are available in (Lu221

et al., 2012). These intervals set limits to 𝑝𝑋(𝑠) thanks to two estimators, the lower bound of the interval 𝐿𝑋(𝑆𝑛(𝑠), 𝛼)222

and its upper bound 𝑈𝑋(𝑆𝑛(𝑠), 𝛼). Let 𝐼𝑋(𝑛, 𝑠, 𝛼) = [𝐿𝑋(𝑆𝑛(𝑠), 𝛼), 𝑈𝑋(𝑆𝑛(𝑠), 𝛼)] be a confidence or a credible interval223
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Figure 3: Probabilistic map estimated with the sample mean showing the area where the chemical concentration threshold
is exceeded. Color indicates probability from 0 (white) to 1 (black).

which contains 𝑝𝑋(𝑠) with a confidence level of 1 − 𝛼, with 𝛼 the risk accepted to be as low as possible. Estimating a224

binomial proportion thanks to an interval is thoroughly studied, and many credible and confidence intervals have been225

suggested in the literature. Before deciding between them, let us introduce a few definitions first.226

The actual coverage probability at a fixed value of 𝑝𝑋 is an estimate of the probability that an interval actually227

contains 𝑝𝑋 . The nominal coverage probability is the nominal confidence level 1−𝛼. The nominal coverage probability228

is the "target" coverage probability: the one we try to attain when we derive a method providing a confidence interval.229

The actual coverage is the "true" coverage. The expected width is the expectation of the length of an interval. It is a230

good measure of the estimation performance for a given interval with an actual coverage probability of 1 − 𝛼. Indeed,231

in an emergency, we want to minimize uncertainty, that is to say to have the lowest expected width possible for a given232

risk.233

Two categories of intervals are opposed: strictly conservative intervals and mean correct intervals. A conservative234

interval has its actual coverage probability greater or equal to the nominal confidence level. Conventionally, the235

Clopper-Pearson interval (Clopper and Pearson, 1934) is considered to be the best exact confidence interval to use236

when strict conservativeness is mandatory. Conversely, mean correct intervals have a mean coverage probability of at237

least 1 − 𝛼, but their actual coverage probability can be lower. The actual coverage probability is notably lower than238
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the confidence level for extreme values of 𝑝𝑋 , close to 0 or 1. For our problem, we chose to only focus on mean correct239

intervals, as they are narrower than conservative ones.240

Historically, one of the first confidence intervals introduced was the Wald interval (Laplace, 1812). It is still widely241

used, despite its poor performance in terms of coverage probabilities. Based on the comparative studies of Vollset242

(1993), Newcombe (1998), Brown et al. (2001) and Pires and Amado (2008), we only retained two mean correct243

intervals. For 𝑛 ≤ 40, Brown et al. (2001) recommends to use the score interval (Wilson, 1927), also called Wilson’s244

interval. For 𝑛 ≥ 40, Brown et al. (2001) recommends to employ the adjusted Wald interval, also called Add 4 (Agresti245

and Coull, 1998) what we did in our application.246

Figure 4 shows example of decisions maps accounting for confidence or credible intervals. The map is divided into247

three zones, each one associated with a different decision-making strategy:248

- In the red zone, the lower bound of the interval is greater than 𝑝𝑙𝑖𝑚. There is strong evidence that the concentration249

threshold is exceeded at each location 𝑠. More formally, 𝑝𝑋 is asymptotically larger than 𝑝𝑙𝑖𝑚 with a confidence level250

of 1 − 𝛼. Thus, an action is expected.251

- In the white zone, the upper bound of the interval is lower than 𝑝𝑙𝑖𝑚. There is strong evidence that the concentration252

threshold is not exceeded at any of the location 𝑠. More formally, 𝑝𝑋 is asymptotically smaller than 𝑝𝑙𝑖𝑚 with a253

confidence level of 1 − 𝛼. Thus, an action is not necessary.254

- In the grey zone, 𝑝𝑙𝑖𝑚 is enclosed by the interval bounds. 𝑝𝑋 and 𝑝𝑙𝑖𝑚 cannot be easily compared and the result is255

non significant.256

The left and right decision maps of figure 4 are computed with the same data and parameters, except for the257

probability threshold 𝑝𝑙𝑖𝑚. It illustrates the loss of significativity phenomenon: when 𝑝𝑙𝑖𝑚 goes under a certain value258

(dependent on the sample size and the confidence level), the grey zone tends to occupy all the map which becomes259

useless to the decider.260

The upper bound 𝑈𝑋(𝑆𝑛(𝑠), 𝛼) of the confidence interval depends on the number 𝑛 of samples. For instance, for a261

given sample size 𝑛, an accepted risk 𝛼 of 5%, and no realization of concentration exceedance among the 𝑛 simulations262

(𝑆𝑛(𝑠) = 0), the upper bound of the interval is: 𝑈𝑋(0, 5%) =
1

𝑛+4

(

2 + 𝑧0,975
√

2(𝑛+2)
𝑛+4

)

. Details to obtain this result263

are given in Appendix 9.1. Figure 5 shows the upper bound of the Add 4 interval (used in our application) versus264

the sample size for this example. Whenever the probability threshold 𝑝𝑙𝑖𝑚 is under the upper bound, we face a loss of265

significativity: with all non-red zones colored in grey. In the following of our paper, we present a strategy which aims266

at avoiding the loss of significativity and reducing the grey zone.267
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Figure 4: Two probabilistic maps accounting for confidence intervals of the area where the concentration threshold is
exceeded. Both maps are computed with the same data and parameters, except for the probability threshold 𝑝𝑙𝑖𝑚 of 5%
(on the left) and 4% (on the right).

Figure 5: Upper bound of the Add 4 confidence interval with no realization of concentration exceedance (𝑆𝑛 = 0) and and
accepted risk 𝛼 = 5% as a function of the sample size 𝑛.
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5. Accounting for spatial correlation in a Bayesian framework268

5.1. Definition of a hierarchical model based on a Gaussian process269

In our previous model, the n-sample 𝑍1(𝑠), ..., 𝑍𝑛(𝑠) of 𝑍(𝑠) was supposed to be independent for every location270

𝑠 ∈ ℝ2, and the spatial structure of the data was not taken into account. However, atmospheric concentration data have271

a continuously varying response in space. Therefore, the information gathered at location 𝑠 may help improving the272

estimations in nearby points 𝑠 + ℎ, with ℎ low.273

From now on, we place ourselves in the framework of Bayesian statistics and the parameter 𝑝𝑋 becomes the random274

variable 𝑃𝑋 . Let’s assume the conditional independence of 𝑆𝑛(𝑠) (the number of times the concentration threshold is275

exceeded at location 𝑠) and consider the following hierarchical model, inspired from Diggle and Ribeiro (2007) with276

𝑆𝐺𝑃𝑋(𝑠) denoting a spatial Gaussian process:277

𝑆𝑛(𝑠) ∣ 𝑃𝑋(𝑠) = Σ𝑛
𝑖=1𝑍𝑖(𝑠) ∣ 𝑃𝑋(𝑠) ∼ (𝑛, 𝑃𝑋(𝑠))

With 𝑙𝑜𝑔𝑖𝑡(𝑃𝑋(𝑠)) ∣ 𝛽, 𝜏, 𝜆 ∼ 𝑆𝐺𝑃𝑋(𝑠). The logit function 𝑥 → 𝑙𝑛( 𝑥
1−𝑥 ) for 𝑥 ∈ (0, 1), sends the set [0, 1] to ℝ.278

Thus, to go from 𝑃𝑋(𝑠) to 𝑆𝐺𝑃𝑋(𝑠), one needs to apply the logit function to 𝑃𝑋(𝑠).279

A spatial Gaussian process 𝑆𝐺𝑃𝑋(𝑠) ∶ 𝑠 ∈ ℝ2 is a stochastic process of which the joint distribution 𝑆𝐺𝑃𝑋 =280

{𝑆𝐺𝑃𝑋(𝑠1),… , 𝑆𝐺𝑃𝑋(𝑠𝐾 )} is multivariate normal for every set of positions 𝑠1,… , 𝑠𝐾 with 𝑠𝑗 ∈ ℝ2. Any such281

process is completely defined by its mean function 𝜇(𝑠) = 𝔼[𝑆𝐺𝑃𝑋(𝑠)], and its covariance function 𝛾(𝑠, 𝑠′) =282

cov(𝑆𝐺𝑃𝑋(𝑠), 𝑆𝐺𝑃𝑋(𝑠′)).283

For a set of positions 𝑠1,… , 𝑠𝐾 , the spatial Gaussian process 𝑆𝐺𝑃𝑋 reads:

𝑆𝐺𝑃𝑋 = {𝑆𝐺𝑃𝑋(𝑠1),… , 𝑆𝐺𝑃𝑋(𝑠𝐾 )} = {𝑙𝑜𝑔𝑖𝑡(𝑃𝑋(𝑠1)),… , 𝑙𝑜𝑔𝑖𝑡(𝑃𝑋(𝑠𝐾 ))} ∼ 𝐾 (𝜇,Σ)

𝜇 = (𝜇(𝑠𝑗))𝐾𝑗=1 = (𝑋𝑇 (𝑠𝑗)𝛽)𝐾𝑗=1 = 𝑋𝑇 𝛽 is a K-dimensional mean vector with 𝑋(𝑠) the design matrix and 𝛽 a mean284

parameter. The design matrix gathers all the information (coordinates, distance to the source term, terrain topology)285

specific to position 𝑠, which could be correlated to the probability of exceeding the threshold. For example, the design286

matrix may be 𝑋(𝑠) = [1, 𝑋1(𝑠), 𝑋2(𝑠), 𝑋3(𝑠)]𝑇 with the y-coordinate 𝑋1(𝑠), the x-coordinate 𝑋2(𝑠) and the distance287

to the source term 𝑋3(𝑠) as explanatory variables. Σ such that Σ𝑖𝑗 = 𝛾(𝑠𝑖, 𝑠𝑗) = 𝜏𝑒𝑥𝑝(− ||𝑠𝑖−𝑠𝑗 ||
𝜆 ) is a 𝐾x𝐾-dimensional288

matrix with 𝜏 a variance parameter and 𝜆 a scale parameter. This spatial Gaussian process is supposed to be isotropic,289

that is to say that the covariance 𝛾(𝑠𝑖, 𝑠𝑗) depends only on the distance between the points 𝑠𝑖 and 𝑠𝑗 .290
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The covariance function 𝛾 ∶ ℝ2 ×ℝ2 → [0, 𝜏] is such that:

∀(𝑠𝑖, 𝑠𝑗) ∈ ℝ2 ×ℝ2 𝛾(𝑠𝑖, 𝑠𝑗) = 𝜏𝑒𝑥𝑝(−
||𝑠𝑖 − 𝑠𝑗||

𝜆
)

The covariance function decreases exponentially as the Euclidean distance between 𝑠𝑖 and 𝑠𝑗 increases, and is equal291

to 𝜏 if 𝑠𝑖 = 𝑠𝑗 . 𝜏 is the variance of 𝑆𝐺𝑃𝑋(𝑠) for any location 𝑠 ∈ ℝ2. For ||𝑠𝑖 − 𝑠𝑗|| = 3𝜆, 𝛾(𝑠𝑖, 𝑠𝑗) =292

cov(𝑆𝐺𝑃𝑋(𝑠𝑖), 𝑆𝐺𝑃𝑋(𝑠𝑗)) ≤ 0.05𝜏. The covariance is negligible with respect to 𝜏 at a distance of more than 3𝜆.293

5.2. Prior and posterior distributions of the Gaussian process parameters294

Prior distributions encode our initial knowledge about the parameters of the Gaussian process. The parameters295

(𝛽𝑖)𝑖∈[[1;4]] can take any value in ℝ, so we chose a normal distribution a priori: ∀𝑖 ∈ [[1; 4]] 𝛽𝑖 ∼  (𝜇𝛽𝑖 , 𝜎
2
𝛽𝑖
). The296

parameter 𝜏 is a variance, so we typically chose an inverse gamma distribution because it is defined on ℝ+ and induces297

conjugate distributions: 𝜏 ∼ InvGamma(𝛿𝜏 , 𝜙𝜏 ). The parameter 𝜆 must be strictly positive, so we chose a gamma298

distribution a priori: 𝜆 ∼ Γ(𝑘𝜆, 𝜃𝜆).299

The corresponding directed acyclic graph (DAG) is given in figure 6. A DAG is a graphical model that represents300

a hierarchical dependence structure, i.e. ∀𝑖 ∈  , with  being the vertices of the graph, 𝑊𝑖 and its non descendants301

are conditionally independent given the parents of 𝑊𝑖, 𝑊𝑖 being the random variables of the problem. For example,302

on figure 6, one can see that ∀𝑖 ∈ [[1; 𝑛]]∀𝑗 ∈ [[1;𝐾]]𝑍𝑖(𝑠𝑗) ∼ (𝑃 (𝑠𝑗)).303

Zi(sj) | PX(sj) PX(sj) SGPX(sj) NK

βi N

µβi

σ2
βi

γ λ Γ

kλ

θλ

τ InvGamma

δτ

φτ

B

i ∈ [[1;n]]

j ∈ [[1;K]]

i ∈ [[1; 4]]

Figure 6: Directed Acyclic Graph (DAG) of the model. We use the standard symbols.

To build the posterior distribution of {𝑃 (𝑠𝑗) ∶ 𝑗 ∈ [[1;𝐾]]} from 𝑛 observations of 𝑍(𝑠𝑗), we used the class of304

algorithms known as Markov chain Monte Carlo methods (MCMC). MCMC techniques are a set of sampling methods305

that produce a Markov chain whose stationary distribution is the posterior distribution in Bayesian statistics.306
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The posterior distributions are presented in Appendix 9.2. As it is not possible to access directly the distributions307

of 𝛽𝑖, 𝜆 and 𝑆𝐺𝑃𝑋(𝑠), we used a Metropolis (Metropolis et al., 1953) - Hastings (Hastings, 1970) algorithm within a308

Gibbs sampler (Geman and Geman, 1984) to evaluate the posterior distributions. The proposal kernel for the MCMC309

algorithm are given in Appendix 9.3 Finally, we built a Markov chain for 𝛽, 𝜏, 𝜆 and 𝑆𝐺𝑃𝑋(𝑠𝑗), that is to say a chain310

of dimension 𝑙𝑒𝑛𝑏𝑒𝑡𝑎 (the dimension of 𝛽) + 2 + K (the number of points of the map).311
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6. Validation of the Gaussian process model312

6.1. Generation of data313

First, we tested our method on simulated data representing concentrations. Let 𝛽𝑡𝑟𝑢𝑒, 𝜆𝑡𝑟𝑢𝑒 and 𝜏𝑡𝑟𝑢𝑒 be the real314

parameters that we look for. We first generated one realization 𝑆𝐺𝑃 simu
𝑋 of the spatial Gaussian process 𝑆𝐺𝑃𝑋 ∼315

 (𝑋𝑇 𝛽𝑡𝑟𝑢𝑒,Σ(𝜏𝑡𝑟𝑢𝑒, 𝜆𝑡𝑟𝑢𝑒)). 𝑆𝐺𝑃𝑋 is a vector of dimension 𝐾 , which we can represent as an exceedance probability316

map of dimension√𝐾×
√

𝐾 , by applying to it the expit function (also called logistic sigmoid function) 𝑥 ↦ 𝑒𝑥𝑝𝑖𝑡(𝑥) =317

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝑒𝑥𝑝(𝑥)
1+exp(𝑥) for 𝑥 ∈ ℝ, which sends the set ℝ to the set [0, 1]. The expit function is the inverse of the logit318

function. We used this realization to simulate 𝑆simu
𝑛 (𝑠) ∼ (𝑛, 𝑃 simu

𝑋 (𝑠) = 𝑒𝑥𝑝𝑖𝑡(𝑆𝐺𝑃 simu
𝑋 (𝑠)).319

We set the parameters as follows: 𝛽𝑡𝑟𝑢𝑒 = [−8, 0.2, 0.2,−0.3], 𝜏𝑡𝑟𝑢𝑒 = 1, 𝜆𝑡𝑟𝑢𝑒 = 1, and 𝑛 = 100. We could have320

set them to other values; these remain just fictive values for assessing the model. Figure 7 shows a realization of this321

process, that we used as the target for the probability estimation algorithm.322

Figure 7: Target probability map generated for testing the estimation algorithm.

6.2. Reconstruction of the synthetic data323

We assume that we have no or little prior knowledge about the data to reconstruct. Thus, we consider uninformative324

or low-informative prior distributions as follows:325

∀𝑖 ∈ [[1; 4]] 𝛽𝑖 ∼  (𝜇𝛽𝑖 = 0, 𝜎2𝛽𝑖 = 100), 𝜏 ∼ InvGamma(𝛿𝜏 = 1, 𝜙𝜏 = 1), 𝜆 ∼ Γ(𝑘𝜆 = 2, 𝜃𝜆 = 0.5).326

𝛽𝑖 is randomly initialized between −1 and 1. We arbitrarily initialize 𝜏 at 1 because it is the order of magnitude327

of the parameters that interest us: 𝜏 ≤ 0.1 is almost trivial and 𝜏 ≥ 10 renders very unstructured, white noise type328
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maps. We also arbitrarily initialize 𝜆 at 1 so that it adapts to the size of the map. Expert knowledge could allow a better329

initialization on real data. Since we suspect that the true value of 𝑆simu
𝑛 (𝑠) is around the sample mean, we initialize330

𝑆𝐺𝑃𝑋(𝑠) at its sample mean. We fix the variances of the proposal kernels so as to have an acceptance rate close to331

0.234: 𝜎prop𝛽 = [0.25, 0.01, 0.01, 0.01]𝑇 , 𝜎prop𝜏 = 0.13, 𝜎prop𝜆 = 0.18 and 𝜎prop𝑆𝐺𝑃𝑋 (𝑠𝑗 )
= 2.53.332

Figure 8 represents the output Markov chain of the MCMC algorithm for 10,000 iterations. The first 2,000 terms,333

notably the burning period, were removed from it, as well as one term out of two to reduce the temporal dependence334

of the chain. Figure 8 shows that this MCMC algorithm has good mixing properties, since the output Markov chain335

looks like a Gaussian noise. All the chains are centered on their true parameters: 𝛽𝑚𝑒𝑎𝑛 = [−7.95, 0.20, 0.21,−0.31],336

𝜏𝑚𝑒𝑎𝑛 = 1.06, and 𝜆𝑚𝑒𝑎𝑛 = 1.03. One can observe that 𝜏 and 𝜆 are highly correlated, as expected. This validates the337

reconstruction of our synthetic data representing concentrations in the atmosphere.338

Figure 8: Markov chains of the parameters 𝛽, 𝜏 and 𝜆 for 𝑁 = 10, 000 iterations, 𝑛 = 100 observations, 𝐾 = 2, 500 points,
𝛽 𝑡𝑟𝑢𝑒 = [−8, 0.2, 0.2,−0.3], 𝜏 𝑡𝑟𝑢𝑒 = 1, and 𝜆𝑡𝑟𝑢𝑒 = 1

6.3. Comparison of point estimates (𝑃𝑋(𝑠𝑗))339

𝑆𝐺𝑃𝑋(𝑠) Markov chain simulates the distribution of 𝑆𝐺𝑃𝑋(𝑠𝑗). So, we estimated 𝑃𝑋(𝑠𝑗) using the expit of the340

mean of the Markov chain of the distribution of 𝑆𝐺𝑃𝑋(𝑠𝑗) = 𝑙𝑜𝑔𝑖𝑡(𝑃𝑋(𝑠𝑗) ∀𝑗 ∈ [1; 𝑘] built with MCMC methods.341

From now on, we refer to this estimator as the Bayesian estimator for simplicity.342
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Figure 9 compares point estimations with the Bayesian and sample mean estimator to a target map. The differences343

are very tenuous between the target map, namely the sample mean of 𝑛 realizations of a Bernoulli distribution of 𝑃 𝑠𝑖𝑚𝑢
𝑋 ,344

the map obtained with the estimator 𝑆𝑛(𝑠𝑗 )
𝑛 and the map obtained with the Bayesian estimator. The three probability maps345

(target, sample mean estimation, and Bayesian estimation) are very similar. The rightmost map shows the difference346

of mean absolute error (MAE), the average of the absolute difference between estimation and actual observation:347

𝑀𝐴𝐸 = 1
𝑛
∑𝑛

𝑖=1 |𝑃𝑖
𝑒𝑠𝑡𝑖𝑚𝑒𝑑 −𝑃𝑖

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
|. Blue cells are the ones for which the Bayesian estimator performs betters, and348

the red cells are where the sample mean performs better. There is no clear pattern, namely no particular region where349

one estimator beats the other.350

Figure 9: Probability maps comparing the sample mean and Bayesian point estimation. The differences are very tenuous.
Left: the target map, namely the sample mean of 𝑛 realizations of a Bernoulli distribution of 𝑃 simu

𝑋 . Middle left: map

obtained with the sample mean estimator
𝑆𝑛(𝑠𝑗 )

𝑛
. Middle right: map obtained with the Bayesian estimator. Right: difference

of the absolute errors between the Bayesian and sample mean estimators. The Bayesian (resp. sample mean) estimator
performs better in blue (resp. red) cells.

Numerically the Bayesian estimator performs slightly better overall: the MAE of the Bayesian estimator, equal to351

0.0154, is below the MAE of 𝑆𝑛(𝑠)
𝑛 , equal to 0.0167. Although small, this difference is found on the whole of the tests352

performed.353

6.4. Empirical validation based on the coverage probability354

We wish now to assess the uncertainty on the estimation of 𝑃𝑋(𝑠𝑗) by building either Add 4 or Bayesian credible355

intervals. In the Bayesian approach, we use the distribution of 𝑆𝐺𝑃𝑋(𝑠𝑗) to determine for instance the 95% credible356

interval by considering the 2.5% and 97.5% quantiles of the distribution.357

To compare our Bayesian interval with that of Add 4, we computed the mean coverage probability for the risks358

𝛼 = 0.01 and 𝛼 = 0.05. We generated 1,000 maps of size 10 x 10 with their associated random parameters 𝛽, 𝜏 and 𝜆359

for a total of 1,000 x 10 x 10 = 100,000 different locations. Keeping in mind that we want to estimate the uncertainty360

on 𝑃𝑋(𝑠) for each of these locations, we drew 𝑛 = 100 realizations of (𝑃 (𝑠)). From this sample, we estimated the361

corresponding Bayesian and Add4 intervals for each location. We could then compute the average coverage probability362

by assessing how many Bayesian and Add4 intervals contained the actual value 𝑃𝑋(𝑠) among the 100,000 different363

locations.364
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Table 1
Comparison table of the average coverage probability and the expected width of the Bayesian interval and the Add 4
interval.

Interval Average coverage probability Expected width

Bayesian at 95% 94.3% ± (8.2% × 10−2) (1.29 × 10−1) ± (5.9 × 10−4)
Bayesian at 99% 98.3% ± (4.4% × 10−2) (1.64 × 10−1) ± (7.5 × 10−4)
Add 4 at 95% 95.6% ± (6.6% × 10−2) (1.55 × 10−1) ± (5.0 × 10−4)
Add 4 at 99% 99.2% ± (2.9% × 10−2) (2.04 × 10−1) ± (6.6 × 10−4)

Table 1 compares the performances of the Bayesian and Add 4 intervals, computed with the test case illustrated in365

figure 7. With smaller average coverage probability, Bayesian intervals are slightly less conservative but they achieve366

significantly smaller expected widths (20% on average) than those computed with the Add 4 method, which make them367

an attractive choice. We obtained similar results in all our other experiments (not shown here).368

6.5. Improvement of significativity using the Gaussian process369

While the Bayesian approach slightly improves point estimation, its main interest lies in interval estimation as we370

show hereafter. More precisely, we consider the grey zones on the probabilistic maps obtained by using alternatively371

Add 4 and Bayesian intervals.372

Figure 10 represents the decision maps drawn with the sample mean, the confidence interval Add 4, and our373

Bayesian hierarchical model, computed with the test case illustrated in figure 7. Let’s recall that this case considers374

𝑛 = 100 simulations, 𝛼 = 5%, 𝑝𝑙𝑖𝑚 = 5%, 𝐾 = 2 500 points, 𝑁chain = 10 000 iterations, 𝛽𝑡𝑟𝑢𝑒 = [−8, 0.2, 0.2,−0.3],375

𝜏𝑡𝑟𝑢𝑒 = 1, and 𝜆𝑡𝑟𝑢𝑒 = 1. The grey zone obtained from Bayesian intervals (right) is smaller than with Add 4 intervals376

(middle). It is reduced from “both sides”, by the growth of both the red and white zone on the right map.377

Figure 11 displays the size of the red, gray, and white areas of figure 10. By taking into account the spatial378

dependence of the data, the Bayesian model managed to reduce the uncertainty associated with the estimation in379

comparison with Add 4. Here the reduction comes mostly from coloring gray cells into white. However, one can380

notice that the converse was observed in other experiments that we conducted (not shown here).381

7. Probabilistic maps for the real accident using the hierarchical model382

Finally returning to the study of the accidental situation, the figure 12 represents the decision maps drawn with383

the Add 4 confidence interval and our Bayesian hierarchical model for the Lubrizol data set. This case considers384

𝑛 = 100 simulations, 𝛼 = 5%, 𝑝𝑙𝑖𝑚 = 4%, 𝐾 = 2 500 points and 𝑁𝑐ℎ𝑎𝑖𝑛 = 10 000. It clearly illustrates the capacity of385

the Bayesian estimator to overcome loss of significativity exemplified in figure 4.386

Thus, Bayesian intervals bring two improvements when it comes to drawing decision maps:387

• It reduces the width of the grey area of a small but significant amount.388
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Figure 10: Probabilistic maps for the synthetic data. On the left: point estimate; in the middle: use of Add 4 intervals; on
the right: use of Bayesian intervals. 𝑝𝑙𝑖𝑚 = 5%

Figure 11: Histogram of the size of the three probabilistic areas corresponding to the synthetic data.

• Above all, it counteracts the loss of significativity phenomenon, namely it prevents the grey zone to spread389

everywhere when considering small probability threshold or small risk. This is probably the main interest of our390

Bayesian estimator, and is indeed illustrated above with the Lubrizol test case391

The Bayesian model produces a map that can be used by decision-makers, unlike the Add 4 interval.392

Sometimes, we cannot approximate a map using the design matrix with a mean parameter. For instance, one393

can imagine scenario with two source terms, where the mean parameter does not model the situation well, as only394

the distance to one source term would be taken into account. According to Diggle and Ribeiro (2007), even in395
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Figure 12: Comparison of decision maps obtained with the Add4 interval (on the left) and the Bayesian estimators (on the
right). The Bayesian estimator is robust against loss of significativity (𝑝𝑙𝑖𝑚 = 4%).

this situation, if the data are spatially dependent, this Bayesian framework manages to grasp the spatial dependence396

through the variance and scale parameters, and to give a reliable estimation of the map. In this way, in any case, our397

Bayesian framework gives more accurate estimations of the probability of exceeding a concentration threshold than398

the confidence intervals studied earlier.399

7.1. Limit of the Bayesian model400

Table 2 represents the computation time for different number of locations 𝐾 , for 10,000 MCMC iterations. We used401

the Python language, version 3.9.12, and a computer with an Intel Core i7-10810U Processor, 8 GB of memory, and402

a processor speed between 1.1GHz and 4.9GHz. Figure 13 represents the log-scaled computation time depending on403

different numbers of locations for the confidence interval Add 4 and the credible interval computed with the MCMC404

algorithm. Table 2 and figure 13 both show that our MCMC algorithm is very time-consuming, especially when405

compared to the Add 4 interval. In this way, the main limitation in the implementation of our Bayesian hierarchical406

model is the computation time.407

In order to overcome the computational time barrier and reduce the "grey area", we can consider two options. We408

can increase the number of simulations in the sample by using existing models. The width of the frequentist interval409

being of the order of magnitude of 1
√

𝑛
, doubling the number of simulations would allow to divide the width by √

2.410

In this way, the grey area of the Add4 interval will be reduced. We can also try to reduce the computation time of the411

M. Caillat, V. Pibernus, S. Girard, M. Ribatet, P. Armand and C. Duchenne: Preprint submitted to Elsevier Page 20 of 28



Adaptive probabilistic modeling of atmospheric releases.

Table 2
Computation time table depending on the number of locations 𝐾 ×𝐾 for 𝑁chain = 10, 000 iterations.

Number of locations MCMC computation time Add 4 computation time

25 9s 0.01s
100 1min 10s 0.04s
225 3min 11s 0.05s
400 8min 6s 0.07s
900 28min 7s 0.11s
1600 2h 36min 58s 0.15s
2500 12h 48min 01s 0.22s

Figure 13: Log-scaled computation time versus number of locations for Add 4 and the MCMC framework

Bayesian intervals. These two options can probably be carried out together, but the choice of one or the other method412

is decisive and could be the subject of a further study not addressed here.413
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8. Conclusion414

The objective of this work was to better evaluate the danger zones that could be generated in an accidental situation415

implying the atmospheric dispersion of hazardous materials. To deal with this issue, we have developed methods416

to generate probabilistic maps of the area where a concentration threshold associated with adverse consequences is417

exceeded. These maps display a red zone with strong evidence of exceeding the concentration threshold, a white418

zone with strong evidence of not exceeding the concentration threshold, and in between a grey zone where nothing419

can be claimed. In the red zone, decisions would certainly be taken like, for example, sheltering or evacuating the420

population. Contrarily, in the white zone, no action would certainly be taken. The grey zone is the most difficult to take421

decision. While caution is required, action would be recommended. We presented and compared different strategies for422

building probabilistic danger maps from interval estimation of the probability of exceeding a concentration threshold:423

the frequentist approach and a Bayesian framework. We conducted extensive tests with synthetic data, and illustrated424

the results with a case study inspired by the Lubrizol accident that occurred in 2013 in Rouen (France).425

First, we studied confidence intervals whose estimation is associated with a controllable nominal risk. We compared426

several mean correct intervals to estimate a binomial proportion. We stipulated this rule based on the paper of Brown427

and DasGupta (Brown et al., 2001): for a number of simulations below 40, we recommend using the Score interval;428

for a number of simulations above 40, we advise using the Add 4 interval (also called Agresti and Coull). Although429

these intervals allow the construction of very useful decision maps, they have a limit of significance. Indeed, when the430

sample size is small as are the concentration threshold, the probability of exceeding threshold and/or the accepted risk431

level, the probabilistic map may be of no use for decision-making.432

To solve this problem, we encoded the spatial dependence of the probabilities of exceeding a concentration433

threshold between nearby points in a probabilistic model. We achieved this by implementing a Bayesian hierarchical434

model, based on spatial Gaussian processes. We compared the performance of the Bayesian model and the above-435

mentioned confidence intervals. We showed on simulated data that the Bayesian model was more accurate and led to436

narrower interval than the Add 4 interval. We also showed that the Bayesian model was able to significantly lower437

the significance limit of the estimate. In this way, it was able to draw informative probabilistic maps when frequentist438

interval was of no help to decision-makers. However, the computation time of the Bayesian model was considerably439

longer than Add 4, especially for an increasing number of points on maps. On the contrary, the computation time is440

not impacted by the number of simulations since the computation time of the sample mean is negligible compared to441

that of the Bayesian model.442

In light of these results, in an emergency, we recommend plotting decision maps with a frequentist estimator. For443

a given concentration threshold, risk, number of simulations, and exceedance probability limit, if the uncertain zone444

of the probabilistic map becomes dominant over the zone of "certainty", the Bayesian model should be used to obtain445
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more accurate results. We also recommend, for a given concentration threshold and a number of simulations, to change446

the risk and probability threshold and see what lower bound on these parameters can be used to evaluate the probability447

of exceeding a concentration threshold.448

To the best of our knowledge, our scientifically reliable method is the first attempt to provide information on the449

level of confidence attributed to concentration results in case of atmospheric releases. In the future, we plan to reduce450

the computational time of the Bayesian hierarchical model, for instance by doing a few steps of the MCMC algorithm451

simultaneously or by marking points independent after a certain distance, what is called Gaussian Markov random452

fields (Rue and Held, 2005). Indeed, currently, the evaluation of each complete conditional distribution requires the453

inversion of a K x K-dimensional covariance matrix. Thanks to Gaussian Markov random fields, we could ignore a large454

part of this matrix composed of 0, and only invert sub-matrices much smaller. This should speed up the computation455

and reduce the time of the Bayesian algorithm to that of the frequentist intervals. Later on, we also plan to implement456

our Bayesian method into an interactive and user-friendly tool that could help decision-makers better grasp the concept457

of estimation uncertainty on probabilistic danger maps and make this probabilistic tool understandable to users without458

expertise in statistics or physical modeling.459
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9. Appendices460

9.1. Upper bound of the Add 4 interval461

The confidence interval Add 4 (Agresti and Coull, 1998) is:462

𝜋̂𝑛 ± 𝑧1−𝛼∕2

√

𝜋̂𝑛(1 − 𝜋̂𝑛)
𝑛 + 4

,

with 𝜋̂𝑛 =
𝑆𝑛+2
𝑛+4 and 𝑧1−𝛼∕2 the 1 − 𝛼∕2 Gaussian quantile.463

For a given sample size 𝑛, 𝛼 = 5%, and zero realization of concentration exceedance among the 100 simulations,464

the upper bound of Add 4 is:465

𝑈𝑋(0, 𝛼) =
2

𝑛 + 4
+ 𝑧1−𝛼∕2

√

2
𝑛+4 (1 −

2
𝑛+4 )

𝑛 + 4
= 1

𝑛 + 4

(

2 + 𝑧0,975

√

2(𝑛 + 2)
𝑛 + 4

)

.

9.2. Posterior distributions466

Let 𝑠1,… , 𝑠𝐾 ∈ 𝕏 ⊆ ℝ2 be a set of 𝐾 locations. 𝑃𝑋 = (𝑃𝑋(𝑠1),… , 𝑃𝑋(𝑠𝐾 )), 𝑆𝑛 = (𝑆𝑛(𝑠1),… , 𝑆𝑛(𝑠𝐾 )), and467

𝑆𝐺𝑃𝑋 = (𝑆𝐺𝑃𝑋(𝑠1),… , 𝑆𝐺𝑃𝑋(𝑠𝐾 )).𝑋(𝑠𝑗) = (1, covariables(𝑠𝑗)) and𝑋 = (𝑋(𝑠1),… , 𝑋(𝑠𝐾 )) is the design matrix.468

𝛽 = (𝛽1,… , 𝛽𝑙𝑒𝑛𝑏𝑒𝑡𝑎−1) ∈ ℝ𝑙𝑒𝑛𝑏𝑒𝑡𝑎, 𝜏 ∈ ℝ+ and 𝜆 ∈ ℝ+ are the parameters of our model. 𝛽−𝑖 is the vector 𝛽 without469

the term 𝛽𝑖.470

Let’s consider𝐶𝑋 = 𝑆𝐺𝑃𝑋−𝑋𝑇 𝛽. |.| represents the determinant of a matrix. For example, |Σ(𝜏, 𝜆)| = det(Σ(𝜏, 𝜆)).471

The implementation of the a posteriori distributions is done using a logarithmic scale. So we calculate the log-472

distributions below.473

𝜋(𝛽𝑖 ∣ 𝛽−𝑖, 𝜏, 𝜆, 𝑆𝐺𝑃𝑋) ∝ 𝜋(𝑆𝐺𝑃𝑋 ∣ 𝛽, 𝜏, 𝜆) × 𝜋(𝛽𝑖) and 𝜋(𝛽𝑖) ∼  (𝜇𝛽𝑖 , 𝜎
2
𝛽𝑖
) a priori

Thus, the posterior log-distribution of 𝛽𝑖 is:

log(𝜋(𝛽𝑖 ∣ 𝛽−𝑖, 𝜏, 𝜆, 𝑆𝐺𝑃𝑋)) ∝ −1
2
𝐶𝑋

𝑇Σ−1𝐶𝑋 − 1
2
(
𝛽𝑖 − 𝜇𝛽𝑖
𝜎𝛽𝑖

)2 (1)

𝜋(𝜏 ∣ 𝛽, 𝜆, 𝑆𝐺𝑃𝑋) ∝ 𝜋(𝑆𝐺𝑃𝑋 ∣ 𝛽, 𝜏, 𝜆) × 𝜋(𝜏) and 𝜋(𝜏) ∼ Inv-Gamma(𝛿𝜏 , 𝜙𝜏 ) a priori

Thus, the posterior log-distribution of 𝜏 is:

log(𝜋(𝜏 ∣ 𝛽, 𝜆, 𝑆𝐺𝑃𝑋)) ∝ (−𝐾∕2 − 𝛿𝜏 − 1) log(𝜏) − 1
2𝜏

(𝐶𝑇
𝑋Σ

−1
𝜏 𝐶𝑋 + 2𝜙𝜏 ) (2)
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𝜋(𝜆 ∣ 𝛽, 𝜏, 𝑆𝐺𝑃𝑋) ∝ 𝜋(𝑆𝐺𝑃𝑋 ∣ 𝛽, 𝜏, 𝜆) × 𝜋(𝜆) and 𝜋(𝜆) ∼ Gamma(𝑘𝜆, 𝜃𝜆) a priori

Thus, the posterior log-distribution of 𝜆 is:

log(𝜋(𝜆 ∣ 𝛽, 𝜏, 𝑆𝐺𝑃𝑋)) ∝ −1
2
log(|Σ(𝜏, 𝜆)|) + (𝑘𝜆 − 1) log(𝜆) − 𝜆

𝜃𝜆
− 1

2
𝐶𝑇
𝑋Σ

−1𝐶𝑋 (3)

𝜋(𝑆𝐺𝑃𝑋(𝑠𝑗) ∣ 𝛽, 𝜏, 𝜆, 𝑆𝐺𝑃−𝑗
𝑋 , 𝑆𝑛(𝑠𝑗)) ∝ Pr(𝑆𝑛(𝑠𝑗) ∣ 𝑆𝐺𝑃𝑋(𝑠𝑗)) × 𝜋(𝑆𝐺𝑃𝑋(𝑠𝑗) ∣ 𝛽, 𝜏, 𝜆, 𝑆𝐺𝑃−𝑗

𝑋 )

and 𝜋(𝑆𝐺𝑃𝑋(𝑠𝑗) ∣ 𝛽, 𝜏, 𝜆) ∼ 𝐾 (𝑋𝑇 𝛽,Σ) a priori

Thus, the posterior log-distribution of 𝑆𝐺𝑃𝑋(𝑠𝑗) is:

log(𝜋(𝑆𝐺𝑃𝑋(𝑠𝑗) ∣ 𝛽, 𝜏, 𝜆, 𝑆𝐺𝑃−𝑗
𝑋 , 𝑆𝑛(𝑠𝑗))) ∝ 𝑆𝑛(𝑠𝑗) log(expit(𝑆𝐺𝑃𝑋(𝑠𝑗)))

+ (𝑛 − 𝑆𝑛(𝑠𝑗)) log(1 − expit(𝑆𝐺𝑃𝑋(𝑠𝑗)))

− 1
2
𝐶𝑇
𝑋Σ(𝜏, 𝜆)

−1𝐶𝑋

(4)

9.3. Proposal kernels for the MCMC algorithm474

Let Ker ∶ ℝ𝑑 × ℝ𝑑 → ℝ𝑑 be a proposal kernel for the MCMC algorithm. We consider the following kernels for475

the parameters of the model:476

• The kernel of the 𝛽𝑖 is normally distributed, i.e. Ker(𝛽𝑖, .) ∼  (𝛽𝑖, 𝜎𝑝𝑟𝑜𝑝𝛽 ). 𝜎𝑝𝑟𝑜𝑝𝛽 is the proposal variance of477

Ker. It directly influences the acceptance rate of the proposal 𝛽′𝑖 . The choice of 𝜎𝑝𝑟𝑜𝑝 is made empirically, so478

as to have an acceptance rate close to 0.234. Indeed, Roberts, Gelman and Gilks (Roberts et al., 1997) stated479

that for high-dimensional target distributions formed of independent and identically distributed components, for480

Metropolis algorithms with Gaussian proposals, the asymptotically optimal acceptance rate is 0.234.481

• For 𝜏, we already know how to simulate according to an inverse gamma distribution, so there is no need for a482

proposal kernel.483

• The parameter 𝜆 is defined on ℝ+. We used a proposal kernel Log- (𝑙𝑜𝑔(𝜆), 𝜎𝑝𝑟𝑜𝑝𝜆 ). This kernel allows484

performing a log-scale random walk in Metropolis-Hastings.485

• For the 𝑆𝐺𝑃𝑋(𝑠𝑗), we used the normal distribution as before.486
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